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a b s t r a c t

The boundary conditions at an imperfect interface between two homogeneous, isotropic micropolar vis-
coelastic generalized thermoelastic half-spaces of different micropolar, thermal and viscous properties
are solved for reflection and transmission coefficients. The expressions for the reflection and transmission
coefficients which are the ratios of the amplitude of reflected and transmitted waves to the angle of inci-
dent wave are obtained for Lord-Shulman (L-S theory) theory of thermoelasticity and deduced for normal
force stiffness, transverse force stiffness, transverse couple stiffness, thermal contact conductance and
perfect bonding. Viscous and stiffness effects on these amplitude ratios with angle of incidence have been
shown graphically. Some special cases have been deduced.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The linear theory of elasticity is of paramount importance in the
stress analysis of steel, which is the commonest engineering struc-
tural material. To a lesser extent, linear elasticity describes the
mechanical behavior of the other common solid materials, e.g. con-
crete, wood and coal. However, the theory does not apply to the
behavior of many of the new synthetic materials of the elastomer
and polymer type, e.g. polymethyl-methacrylate (Perspex), poly-
ethylene and polyvinyl chloride. The linear theory of micropolar
elasticity is adequate to represent the behavior of such materials.
For ultrasonic waves i.e. for the case of elastic vibrations character-
ized by high frequencies and small wavelengths, the influence of
the body microstructure becomes significant. This influence of
microstructure results in the development of new type of waves,
not found in the classical theory of elasticity. Metals, polymers,
composites, soils, rocks, concrete are typical media with micro-
structures. More generally, most of the natural and manmade
materials including engineering, geological and biological media
possess a microstructure. Developed in [1,2] is the linear theory

of micropolar elasticity. The linear theory of micropolar viscoelas-
ticity has been developed [3,4]. They discussed the propagation
conditions and growth equations which govern the propagation
of waves in micropolar viscoelasticity.

The linear theory of micropolar thermoelasticity was developed
by extending the theory of micropolar continual to include thermal
effects [5,6] and is known as micropolar coupled thermoelasticity.
Presented in [7] is the generalized micropolar thermoelasticity by
using the work in [9]. Developed in [10] is a heat-flux dependent
theory of micropolar thermoelasticity.

An actual interface between two elastic solids is much more
complicated and has physical properties different from those of
the substrates. There are two classical elastic boundary conditions
for solid/solid interface. One boundary condition for welded inter-
face and other is slip boundary condition. A generalization of this
concept is that of an imperfectly bonded interface for which dis-
placement across a surface need not be continuous.

Imperfect bonding considered in the present investigation is to
mean that the stress components are continuous and small dis-
placement field is not. The small vector difference in the displace-
ment is assumed to depend linearly on the traction vector.
Significant work has been done to describe the physical conditions
on the interface by different mechanical boundary conditions
by different investigators. Notable among them are the works
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[11–19]. Recently various authors have used the imperfect condi-
tions at an interface to study various types of problems[20–24].

Discussed in [25] is the wave propagation in a micropolar visco-
elastic generalized thermoelastic solid and in [26] the harmonic
waves in thermoviscoelastic solids. Presented in [27] is the reflec-
tion and refraction of micropolar magneto-thermoviscoelastic
waves at the interface between two micropolar viscoelastic media.
Also studied in [28] is the reflection and refraction of thermoelastic
plane waves using the imperfect conditions at an interface
between two thermoelastic media without energy dissipation.
Recently, investigated in [29] is the reflection of wave at viscoelas-
tic-micropolar elastic interface. To be presented is the reflection
and transmission of plane waves between two micropolar visco-
elastic generalized thermoelastic half-spaces of different micropolar,
thermal and viscous properties and deduced the different cases.

2. Basic equations

Following the works in [3,8], the constitutive relations and
equation of motion in micropolar viscoelastic generalized thermo-
elastic solid with one relaxation time in absence of body forces and
body couples are given by

tkl ¼ k1ur;rdkl þ l1ðuk;l þ ul;kÞ þ K1ðul;k � eklr/rÞ � mTdij; ð1Þ
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where k, l, K, a, b, c, kv, lv, Kv, av, bv, cv-material constants, q-den-
sity, T-the temperature distribution, T0-reference temperature, u

!
–

displacement vector, /
!

-microrotation vector, j-microinteria,
m = (3k1 + 2l1 + K1)at, at-coefficient of linear thermal expansion,
C*-specific heat at constant strain, K*-thermal conductivity,
eklr-alternate tensor, tkl-components of force stress tensor, mkl-com-
ponents of couple stress tensor,s0-the thermal relaxation time,
dij-Kronecker delta.
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The necessary and sufficient conditions for the internal energy to be
non-negative, as given by Eringen [3,5] are:

0 6 3kþ 2lþ K; 0 6 l; 0 6 K; 0 6 3aþ 2c;
� c 6 b 6 c; 0 6 c; ð8Þ

0 6 3kv þ 2lv þ Kv; 0 6 lv; 0 6 Kv; 0 6 3av þ 2cv;

� cv 6 bv 6 cv; 0 6 cv: ð9Þ

3. Formulation and solution of the problem

Consider two homogeneous, isotropic micropolar viscoelastic
thermally conducting half-spaces being in contact with each other
at the plane surface which we designate as the plane z = 0 of
rectangular cartesian co-ordinate system OXYZ. Consider plane
harmonic waves in xz-plane with wave front parallel to y-axis
and all the field variables depend only on x, z, t.

By Helmholtz representation of a vector into scalar and vector
potentials, it can be written that

~u ¼ rqþr� ~U; r � ~U ¼ 0; ð10Þ
~/ ¼ rnþr� ~U; r � ~U ¼ 0: ð11Þ
Substituting Eqs. (10) and (11) in Eqs. (3)–(5), there results
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It can be noticed that Eqs. (12) and (16) are in scalar potentials q
and T while Eqs. (14) and (15) constitute the coupled system in vec-
tor potentials ~U and ~U and 13 is uncoupled.

For the two dimensional problem in xz-plane, the components
of displacement and microrotation are given by
~u ¼ ðu1; 0;u3Þ; ð17Þ
~/ ¼ ð0;/2; 0Þ: ð18Þ
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Assuming the motion to be harmonic, it follows that
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Substituting these expressions in Eqs. (19) and (20), there results
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