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a b s t r a c t

The nature of the three-dimensional transition arising in the flow past a cylinder is investigated by apply-
ing the Lifschitz–Hameiri theory along special Lagrangian trajectories existing in its wake. Results show
that the von Kármán street is unstable with regard to short-wavelength perturbations. The asymptotic
analysis predicts the possible existence of both synchronous (as modes A and B) and asynchronous (as
mode C) instabilities, each associated to specific Lagrangian orbits. The proposed study provides useful
qualitative information on the origin of the different modes but no quantitative agreement between the
growth rates predicted by the asymptotic analysis and by a global stability analysis is observed. The rea-
sons for such mismatch are briefly discussed and possible improvements to the present analysis are sug-
gested.

© 2015 The Author. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

The flow in the wake of a two-dimensional cylinder becomes
first unstable to three-dimensional disturbances at a Reynolds
number (based on the free-stream velocity and the cylinder di-
ameter) Re ≈ 190. Experiments and numerical simulations have
highlighted the presence of two different shedding modes with
different spatial characteristics, generally referred to as modes A
and B (see for examples in Refs. [1,2]). Floquet analysis [3] certifies
the existence of two separate bands of unstable modes: the first
one (mode A) emerges for Re > 189 and has a spanwise wave-
length of about 4 cylinder diameters, while the second one (mode
B) appears for Re > 259 and is characterized by a shorter spanwise
wavelength (about 0.8 diameter). Both of them are synchronous
modes, i.e., they have the same periodicity of the base flow. An
asynchronous quasi-periodic mode (usually termed mode C) with
an intermediatewavelength also exists andwas revealed by insert-
ing in the flow a thin wire placed parallel to the cylinder axis (see
Ref. [4]). Depending on the geometry this mode can be stable (as
in the case of a circular cylinder) or unstable (square cylinder and
other geometries). It is important to recall that the characteris-
tics of the above mentioned modes and the associated transition
scenarios are not specific to circular cylinders, but applies to a
whole range of two-dimensional geometries ranging from square
cylinders [5] to long plates with aerodynamic noses [6]. Despite
the large number of experimental, theoretical and numerical stud-
ies performed on similar geometries, the precise nature of these
modes is not fully understood yet. Several different mechanisms
have beenproposed to explain their genesis, including elliptic [7,8],
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hyperbolic [7], centrifugal [9], or Benjamin–Feir [10] instabilities
(see for instance in Ref. [11] for a detailed discussion). However,
no conclusive evidence supporting these speculations was given.
In particular, a weak point of all these models consists in the fact
that they are all based on idealized stationary flow configurations,
while the real wake flow evolves in time and space in a complex
way.

The scope of this letter is to illustrate an alternative approach to
investigate the nature of the secondary instability which is based
on the application of the Lifschitz andHameiri theory [12,13] along
particular orbits in the wake of the cylinder. The proposed analysis
is an attempt to overcome the limitation of the previous theories
bringing together results obtained through sensitivity analysis and
asymptotic techniques.

Helpful information on the spatial and temporal evolution of
the secondary instability can be retrieved by performing a struc-
tural sensitivity analysis of the unstable Floquet modes to local-
ized force–velocity feedbacks, as proposed and explained in Refs.
[14,15]. This procedure allows one to identify the instability core
by inspecting the spatial structure of the instantaneous sensitivity
tensor

I(x, y, k, t) =
f +(x, y, k, t) u(x, y, k, t) t+T

t


D
f + · u dS dt

(1)

where u and f + are respectively the direct and adjoint Floquet
eigenvectors and k is the wavenumber in the periodic direction.
By plotting its spectral norm, it is possible to trace the spatial and
temporal evolution of the instability core during the phases of the
vortex shedding. Results for mode A and mode B show that the in-
stability is very localized in space and evolves in times in a com-
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Fig. 1. Numbering of the closed orbits existing in the wake of a cylinder at Re =

260.

plex way (see Ref. [14] for details). Preliminary results obtained
on a square cylinder at Re = 205 presents similar characteris-
tics for all unstable modes. Moreover as noticed by Camarri and
Giannetti [14], in the wake of the cylinder there exist closed La-
grangian trajectories, i.e., orbits described bymaterial pointswhich
return to their initial position after a shedding cycle. Such orbits are
solutions of the ordinary differential equation (o.d.e.)

dX
dt

= Ub(X(t), t) (2)

with the periodic condition

X(t + T ) = X(t). (3)

In these expressions X ≡ {xo, yo} indicates the coordinates of
the material points lying along the Lagrangian trajectory, Ub is the
periodic base flow and T is the shedding period. Here we used a
fourth-order Runge–Kutta scheme coupled to a Newton–Raphson
procedure to solve Eqs. (2) and (3), while the base flow was deter-
mined with the same finite-difference immersed boundary code
described in Ref. [14]. The analysis was performed for both circular
and square cylinders (not documented here for sake of brevity):
in both cases we found three closed Lagrangian trajectories with
shapes and symmetries similar to those depicted in Fig. 1. For the
sake of precision, we have to say that there are actually an infin-
ity of closed orbits satisfying Eq. (2) but on which a material point
comes back to its initial position after n > 1 shedding periods.
These solutions, however, are not considered in the present letter
and are left for future investigations. The sensitivity analysis re-
veals that the instability core for modes A and B is highly localized
in space: the highest sensitivity regions strictly follow the position
of the material points moving along the closed orbits, showing the
existence of a strong correlation between these orbits and the in-
stability core. An example of such behavior is reported in Fig. 2,
where the temporal evolution of the points on the closed orbits
are depicted for mode B (at Re = 260) together with the spectral
norm of the sensitivity tensor I(x, y, k, t) during a whole shedding
period. Similar conclusions hold for the unstable modes arising in
the wake of a square cylinder.

The strong localization of the instability core revealed by the
structural sensitivity analysis suggests the possibility to use a ‘‘lo-
cal theory’’ to describe its generation and evolution. An appealing
approach in this context is given by the short-wavelength (WKBJ)
approximation introduced by Lifschitz and Hameiri [12,13]. Here,
the solution of the linearized Navier–Stokes equations is sought in
the formof a rapidly oscillating and localizedwave-packet evolving
along a Lagrangian trajectoryX(t) and characterized by awavevec-
tor k(t) = ∇φ(x, t) and an envelope a(x, t) such that

{u, p}(x, t) = a(x, t) exp(i φ(x, t)/ϵ) (4)

Table 1
Eigenvalues of the fundamental Floquet matrix associated to Eq. (5) for the three
closed orbits. See Fig. 1 for the orbit numbering.

Orbit Re µ1 µ2 µ3

1,2 190 −0.0317 −31.6541 1
3 190 +0.0127 +78.9224 1

1,2 260 −0.0138 −72.8052 1
3 260 +0.0055 +181.2131 1

with ϵ ≪ 1. In the limit of vanishing viscosity (Re → 0) and large
wavenumbers (∥k∥ → ∞), the theory enables one to evaluate, at
leading order, the growth rate associated with a localized pertur-
bation. This is achieved by solving the following set of linear o.d.e.

Dk
Dt

= −Lt(X)k, (5)

Da
Dt

=


2kkt

|k|2
− I


L(X)a (6)

along the Lagrangian trajectories satisfying Eq. (2) with some ini-
tial conditions. In the previous equations L = ∇Ub is the velocity
gradient tensor of the base flow, I is the identity tensor and the
superscript ‘‘t ’’ indicates the transpose operator.

As proved by Lifschitz and Hameir [12,13], inviscid instability
occurs when such system has at least one solution with ∥a(t)∥ →

∞ as t → ∞. This theory has been successfully applied in the past
to study centrifugal, elliptic and hyperbolic instabilities develop-
ing on 2D steady base flows (see for examples [16–22]). In order to
characterize the instability mechanism occurring in the periodic
wake of the cylinder using such local theory, however, the self-
excited nature of the instability must be properly accounted for. In
such context, a central role is played by the closed Lagrangian tra-
jectories described in the previous section. Such trajectories might
play a special role in the dynamics of the instability: from an invis-
cid point of view, in fact, local instability waves might propagate
on the closed orbits and feedback on themselves leading to a self-
excited mode.

In order to apply the theory, both Eqs. (5) and (6) must be
integrated along the three closed trajectories found in the wake.
Since the base flow is periodic, Eq. (5) is a linear o.d.e. with periodic
coefficients whose general solution can be written in terms of
Floquet modes. In particular, the solution can be found by building
the fundamental Floquet matrix M(T ), solution of the system

DM

Dt
= −Lt(X)M, (7)

M(0) = I, (8)

and extracting its eigenvalues and the corresponding eigenvectors.
Using these eigenvectors as initial conditions to integrate Eq.
(5), it is possible to retrieve the temporal evolution of k during
a whole shedding cycle. Equation (5) admits three independent
solutions related to the three eigenvectors of the fundamental
Floquet matrix M(T ). The corresponding eigenvalues µ for both
Re = 190 and Re = 260 are listed in Table 1. Since the base flow is
periodic and 2D, for each orbit there exists an eigenvalue equal to 1
with a corresponding eigenvector which remains constant in time
and perpendicular to the base flow. The other two eigenvectors,
instead, lie in the same plane as the base flow and are associated
with a complex conjugate pair of eigenvalues.

Once Eq. (5) is solved, the amplitude a can be found by inte-
grating Eq. (6). In principle, to set k in Eq. (6), we can use a general
linear combination of the Floquet modes previously determined.
However, since we are trying to determine a self-excited mode,
we only consider solutions of Eq. (5) which are periodic in time,
i.e., solutions such that k(0) = k(T ). Therefore, only the con-
stant eigenvector orthogonal to the base flow k = kẑ (associated
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