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a  b  s  t  r  a  c  t

In this  work  we  review  the geothermal  wellbore  heat  transmission,  particularly  the  static  and  transient
temperature  profiles  obtained  in production  and  injection  wells.  We  discuss  the  fundamental  meth-
ods  and  approximations  to describe  the wellbore  heat  transmission  and  compare  the results  of  various
approaches  in  the  literature.  The  objective  of  this  work  is  to discuss  the  theory  behind  the  wellbore  heat
transmission  and  then  further  investigate  the effect  of time  on  heat  transmission.  Moreover  a  new  term
called  the  stabilization  time  is  introduced  to  describe  and  assess  how  “static”  and  “transient”  are  the
static  and  transient  temperature  profiles,  respectively.

© 2016  Elsevier  Ltd.  All  rights  reserved.

Our purpose here is to present acceptable methods and
approaches adequate for engineering considerations. The emphasis
is given to the effect of time on wellbore heat transmission. Thus,
we wish to find approximate values of the stabilization time which
will provide engineering accuracy.

Computed results expressed as simple algebraic expressions and
in graphical form and relevant comments are presented to establish
the usefulness of approaches provided.

1. Introduction

Static and transient temperature profiles taken along geother-
mal  wells provide very useful information regarding the fluid and
petrophysical properties of the reservoir. For example, transient
temperature profiles could help identify different zones of water
entry (at different temperatures) into the well. Or they could pro-
vide insight into how much heat is lost to the surroundings of the
well as the fluid is moving in the well. Static profiles on the other
hand could be used to identify the top and bottom of the reservoir.
In fact multiple entry points may  be determined from the static and
transient profiles.

When interpreting either the static or transient temperature
profiles along the wells, two points are very crucial to consider.
The first is that a mathematical model which properly describes the
physics of the phenomenon must exist so that various fluid and/or
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petrophysical properties can be inferred. The second is that during
the measurements actual static or transient conditions should be
indicated. Failing to do so could result in a mischaracterization of
the system. For example after some time of production, if the well
is shut in so that a static temperature profile is to be obtained, the
well needs to be kept shut for a certain amount of time so that actual
static conditions are obtained. Failing to wait for such an amount of
time, actual static temperature profiles will not have been reached.
The necessary time required to reach stabilized conditions can be
assessed through the use of an appropriate mathematical model.

The necessary times required to reach the actual stabilized tem-
perature behavior will be referred to as the stabilization time. The
stabilization time is considered for three cases in this study; the
stabilization time for reaching transient temperature profiles for a
production period, the stabilization time for reaching the transient
temperature profiles for an injection period and the stabilization
time for the static temperature profiles after a production period. A
mathematical model is developed in this study for the above men-
tioned three periods. The equations derived in this study for the
stabilization times serve as an original contribution to the litera-
ture.

Before describing the analytical equations for the stabiliza-
tion times for the different periods, it is crucial to provide some
background information regarding the wellbore heat transmission
problem. Hence, the following chapter provides a review of the lit-
erature regarding the wellbore temperature distribution solutions.
In Section 3, the equations for determining the stabilization times
are given along with sample applications. Finally conclusions are
provided.
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Nomenclature

C Specific heat capacity of the fluid, J/(kg ◦C)
k Thermal conductivity of the formation, J/(ms ◦C)
L Total depth of a well, m
Q Total heat flow rate from a well, J/s
q Heat flow rate per unit length, J/(s m)
r Radial distance, m
T Temperature, ◦C
t Time, s
u  Velocity of the fluid in the wellbore, m/s
w Mass flow rate, kg/s
y Distance upwards from the bottom of the well, m
z Distance downward from the top of the well, m
� Geothermal gradient of the earth, ◦C/m
� Polinomial constant, ◦C/m2

� Euler’s constant, 0.57722
� Thermal diffusivity of the formation, J/(s ◦C)

Subscripts
bh Bottomhole
D Dimensionless
e Earth
if Inflowing fluid
inj Injection
p Production
sh Shut-in
s Stabilization
surf Surface
w Well
wh Wellhead

2. Review of wellbore temperature distribution solutions

Generally speaking, methods and models describing the well-
bore heat transmission are based on a wellbore heat balance with
some assumptions. The most critical assumptions refer to the
boundary condition between the wellbore and the surrounding
formation. Either a constant heat flux or a constant temperature
assumption is used for this purpose. In the case of the general well-
bore heat problem, neither heat flux nor the temperature at the
wellbore remains constant except in special cases. However, the
solutions for the constant flux and constant temperature eventually
converge at long times.

Most of the literature on wellbore heat transmission is based on
the classical work by Ramey (1962). He derived the temperature
distribution in a well used for injecting hot fluid. Ramey (1964)
expanded on this to estimate the rate of heat loss from the well to
the formation. Horne and Shinohara (1979) reexamined the prob-
lem to determine the wellbore heat loss in production and injection
wells. Hasan and Kabir (1994) analyzed wellbore heat transfer
during two-phase flow. Hagoort (2004) assessed Ramey’s classi-
cal method for the calculation of temperatures in injection and
production wells and showed that Ramey’s method is an excellent
approximation.

Carslaw and Jaeger (1959) present graphical and analytical solu-
tions for the cases of internal cylindrical sources losing heat at
constant flux, constant temperature and the radiation boundary
conditions. Solutions converge at long times. This is a sufficiently
long time at which temperature is controlled by formation condi-
tions.

For small values of time heat flow in the wellbore is controlled by
convection, rather than conduction. Ramey recommends using the

constant-temperature cylindrical-source solution if thermal resis-
tance in the wellbore is negligible which is the case when the fluid
flow occurs through casing only.

Our study considers only single-phase fluids flowing in the well.
The single-phase flow analysis is based on the determination of the
fluid temperature as a function of depth and time. Our study deals
with the treatment of heat transmission between the fluid in the
wellbore and the formation. It is assumed that heat flow in the
formation is conductive. For simplicity, we assume a geothermal
well with single-phase liquid flowing in a casing without tubing,
however it is not difficult to derive the equations and give the
expressions for fluid flow within tubing. For most practical pur-
poses, heat transmission between the formation and the fluid may
be treated using a constant overall heat transfer coefficient (Garg
et al., 2004).

Ramey’s solutions for temperature are obtained in terms of
depth. However the effects of varying formation temperature as
a function of depth in terms of geothermal temperature gradient
as well as heat transfer to the surrounding formation by transient
conduction are considered in those solutions.

The equation for the evaluation of the temperature in a produc-
ing geothermal well is given in Eq. (1) (Ramey et al., 1981):

T = T (y) = (Tbh − �y) + ˛A
(

1 − e− y
A

)
+

(
Tif − Tbh

)
e− y

A (1)

where y is the distance upwards from the bottom of the well, Tbh

is the downhole reservoir temperature, (Tbh-˛y) is the tempera-
ture of the earth (Te) assuming linear geothermal gradient, � is the
geothermal gradient (the increase of formation temperature with
increase in depth), and Tif is the inflowing fluid temperature. If Tif

equals Tbh then Eq. (1) reduces to Eq. (2):

T = (Tbh − �y) + ˛A
(

1 − e− y
A

)
(2)

If the geothermal gradient is not constant; that is, temperature
does not increase linearly with depth, then the formation tempera-
ture/depth profile may be broken into a number of linear segments
and the equations applied successively to each segment. If the earth
temperature changes according to the following polynomial fit:

Te = Tbh − ˛y − ˇy2 (3)

then the temperature profile in a producing well becomes:

T =
(

Tbh − ˛y + ˛A − ˇy2 + 2ˇyA − 2ˇA2
)

+
(
−˛A + 2ˇA2

)
e− y

A

(4)

In Eq’s (1)–(4) A is a group of variables defined in Eq. (5):

A = wCf (t)
2�k

(5)

where w is the mass flow rate, C is the thermal heat capacity
(specific heat) of the fluid (assumed constant), k is the thermal con-
ductivity of the formation (earth), and f(t) is a dimensionless time
function representing the transient heat transfer to the formation.

The function f(t) may  be found from Ramey (1962, 1964) and
Ramey et al. (1981), or alternatively may  be approximated from
the line source solution for large flowing times by the equation:

f (t) ≈ − ln
(

rw

2
√

�t

)
− 0.29 (6)

where � is the thermal diffusivity of the formation and rw is the
radius of the casing. The function f(t) is discussed in detail later.

Heat transfer from the casing to the formation in terms of heat
flow rate per unit of length is given by:

q = 2�k

f (t)
(T − Te) (7)
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