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a b s t r a c t

Stress is central to many aspects of rock mechanics, and in the analysis of in situ stress measurement data
the calculation of the mean value and an assessment of dispersion are important for statistical char-
acterisation. Currently, stress magnitude and orientation are processed separately in such analyses. This
effectively decomposes the second-order stress tensor into scalar (principal stress magnitudes) and
vector (principal stress orientations) components, and calculation of mean and dispersion of stress data
on the basis of these decomposed components, which violates the tensorial nature of stress, may either
yield biased results or be difficult to conduct. Here, by introducing tensorial techniques, we examine two
calculation approaches for the mean and dispersion for stress tensors – based on Euclidean and Rie-
mannian geometries – and discuss their similarities, differences and potential applicability in en-
gineering practice. We compare the two approaches using stress tensor superposition and interpolation,
and the analysis of actual in situ stress data. The results indicate that Euclidean and Riemannian mean
tensors are in general not equal, with the disparity increasing as stress tensor dispersion increases. Both
Euclidean and Riemannian approaches are shown to be capable of characterising stress dispersion, al-
though Euclidean dispersion is scale dependent and has units of stress whereas Riemannian dispersion is
a scale independent unitless number. Finally, a paradox is revealed in that despite stress tensors being
Riemannian entities, it is Euclidean mean stress that is the more meaningful for engineering applications.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Stress is central to many aspects of rock mechanics, and in the
analysis of in situ stress measurement data the calculation of the
mean value and an assessment of dispersion are important for
statistical characterisation.8,12,13,32–36 Currently, stress magnitude
and orientation are customarily processed separately in such
analyses (Fig. 1).1–8,32–34,36 This effectively decomposes the sec-
ond-order stress tensor into scalar (principal stress magnitudes)
and vector (principal stress orientations) components, and calcu-
lation of mean and dispersion of stress data on the basis of these
decomposed components, which violates the tensorial nature of
stress, may either yield biased results or be difficult to
conduct9,10,13,37 (p54). As noted elsewhere,11 ‘Since stress is a tensor
with six independent components, calculating the mean, standard
deviation and confidence intervals of the measured stresses cannot be
carried out using the same statistical techniques developed for scalar
quantities’. As an alternative to the separate analysis of principal
stress magnitude and orientation, several researchers in the field

of rock mechanics have calculated the mean stress tensor based on
tensors referred to a common Cartesian coordinate system.11–14,35

Although these contributions essentially introduced a tensorial
approach, they did so in an empirical setting. A result of this is
that, to date, there seems to have been no mathematically rigorous
proposal from the rock mechanics community for calculating such
summary statistics for groups of stress tensors as the mean and
dispersion. In particular, the calculation of the dispersion of a
group of stress tensors obtained from a stress measurement
campaign seems not to have been conducted in the rock me-
chanics field. Here, continuing the analysis of stress tensors re-
ferred to a common Cartesian coordinate system, and considering
tensors as single entities, we introduce approaches based on Eu-
clidean and Riemannian geometry to calculate their mean and
dispersion.

As an early tensorial application example in rock mechanics,
Hyett et al.12 demonstrated that the mean of n stress tensors
should be found by firstly transforming the individual tensors to a
common Cartesian coordinate system (say, x–y–z), and then cal-
culating the mean of each tensor component:
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Here S denotes the mean stress tensor, Si represents a particular
stress tensor, σ and τ are the normal and shear tensor components,
respectively, and σ and τ denote the corresponding mean tensor
components. This approach was subsequently followed by
others.11,13,14,35

Based on Eq. (1), several researchers11,13,35,39 suggested how
the variance of stress tensors might be calculated. After obtaining
the mean stress tensor, a new coordinate system is established
that coincides with the principal directions of the mean tensor
(say, X–Y–Z), and all the original stress tensors transformed into
this new coordinate system. Using the fundamental definition of
variance, i.e. ∑ ( − ) ( − )= x x n/ 1i

n
i1

2 , and recognising that
τ τ τ= = = 0XY YZ ZX , the variance tensor is then calculated as
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However, this only gives the dispersion of each tensor component,
rather than a scalar value indicating the overall variability of the
group of tensors. In other words, comparison of the dispersions of
different groups of tensors is still difficult to conduct with this
approach.

As we show below, these rock mechanics tensorial applications
are essentially a Euclidean approach. However, it is now known that
symmetric positive definite (SPD) matrices such as stress tensors
with positive principal stresses do not live in Euclidean space, but in
curved spaces known as Riemannian manifolds (see for example,
Chapter 6 of Ref. 15 and Chapter 19 of Ref. 16). Statistical analysis of
SPD matrices on Riemannian manifolds has been recently devel-
oped for use in Magnetic Resonance Imaging (MRI) applications in
medicine (Fig. 2). MRI can be used to detect diffusion of water
molecules through biological tissues, and analysis of this can reveal
microscopic details about tissue architecture (either normal or in a
diseased state). As diffusion can be characterised by an SPD matrix
called the “diffusion tensor”, it has been necessary to develop ten-
sorial approaches to aid diagnosis.17–19

In this paper, and following on from earlier work of ours,20 we
focus on the illustration and comparison of Euclidean and Riemannian
approaches to calculating the mean and dispersion of stress tensors,
and their potential applicability in engineering practice. The under-
lying stochastic model is one that simultaneously includes all stress
tensor components (when referred to a common Cartesian coordinate
system), rather than one that processes principal stress magnitudes
and orientations separately. Since these calculations are based on
distance measures, we first give a simple comparison of Euclidean and
Riemannian distances, and indicate their significance in the calculation
of mean tensors. Following this we introduce both Euclidean and
Riemannian mean and dispersion functions, and present tensor su-
perposition techniques in both Euclidean and Riemannian spaces. We
move on to compare Euclidean and Riemannian approaches through
stress tensor superposition and interpolation, and the analysis of ac-
tual and perturbed in situ stress data. We conclude by examining the
differences between the two approaches and their respective
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Fig. 1. Example separate analyses of stress magnitude and orientation.1 (a) Least
squares regression of stress magnitude. (b) Directional statistics applied to principal
stress orientation.
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Fig. 2. Diffusion tensor at each voxel in Diffusion Tensor Imaging.17
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