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a b s t r a c t

A combined boundary element/finite element numerical method is employed to investigate the
response of a hydraulic fracture/natural fracture network to injection. The model is three-di-
mensional and poroelastic. It considers the effects of fracture interactions, fluid diffusion into the
matrix and the natural fractures, fracture opening and shear dilation. The natural fractures be-
havior is modeled using non-linear deformation in both shear and normal directions. For the shear
mode, the slip-weakening model is used to simulate the post-shear failure behavior of the frac-
tures. An example simulation is carried out to study the response of a fracture network to injec-
tion. The calculated injection pressure profile is used to ascertain the deformation response of the
fracture network and its permeability enhancement. The simulation results clearly illustrate the
potential for induced microseismicity due to permanent shear slip on natural fractures sur-
rounding a hydraulically driven major fracture. Although the slip on the natural fractures can
potentially contribute to seismic activity, its contribution to permeability enhancement depends
on whether or not they propagate to connect to form a “hydraulically” connected network with the
main fracture. When the natural fracture system is not connected to the main flow path, the MEQ
information may overestimate the so-called stimulated reservoir volume.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Enhanced Geothermal Systems (EGS)1 and the extraction of
hydrocarbons from low permeability reservoirs rely on gen-
erating a permeable fracture network.2 Numerical modeling is
a suitable tool to design and analyze the stimulation processes
of the fracture network. It is extremely essential to utilize a
modeling technique that encompasses the major affective
mechanisms accurately. Early models of fracture analyses3,4

relied on elastic two-dimensional analytical models of single
fractures and ignored the poroelastic effects. Later on, the
generation of a fracture network during the injection into
unconventional reservoirs has been recognized.5–9 However,
these models underscored the need to fully coupled fracture
network behavior to injection/extraction processes. Recent
models, explicitly consider the effect of fracture network in

the two dimensional fully coupled analysis.10–11 In this paper a
three dimensional (3D) fully coupled poroelastic model is
presented and used to simulate injection into a network of
fractures. The model uses the poroelastic displacement dis-
continuity (DD) to simulate fractures and the finite element
method to model fluid flow inside fractures. The DD is based
on improving the development of Zhou and Ghassemi12 to
consider multiple nonlinear elastic rock joints, slip-weakening
behavior after permanent slippage, shear dilation and its ef-
fect on the fracture permeability enhancement, and transition
of joint fractures (i.e. crack surfaces are in" contact condition)
to hydraulic fractures (i.e. crack surfaces are separated from
each other).

2. Governing equations

2.1. Constitutive relations for rock matrix

The constitutive behavior of fluid-saturated rocks is de-
scribed by the linear theory of poroelasticity.13,14 The coupled
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equations for deformation and fluid diffusion in porous rock
under isothermal conditions can be found in Rice and Cleary.14

The equations present the relationship among the volumetric
response of porous rock, pore pressure variations, and changes
in the pore pressure in response to an applied mean stress.
Besides, pore-fluid diffusion relationship can be presented by
Darcy's law.13,14 By combining these relations and the equili-
brium and compatibility conditions, three-dimensional field
equations (Navier's equations with pore pressure coupling)
can be presented as follow:
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where G is the rock shear modulus, ui is the rock displacement
component in “i” direction, ν is drained Poisson's ratio, νu is
un-drained Poisson's ratio, α is Biot's coefficient, p is pore
pressure, t is time, k is rock permeability, B is Skempton's
coefficient, μ is pore fluid viscosity, and ε is the volumetric
strain. Eq. (1) should be solved with the appropriate boundary
and initial conditions.

2.2. Fluid flow inside fractures

A fracture is represented as a parallel plate model. The se-
paration ( W ) between the plates is assumed constant for a
representative element of the fracture. This particular fracture
geometry is amenable to an exact solution of the Stokes
equation.15 The solution for steady state, laminar in-
compressible flow is known as the Cubic law, μ= ∇Q W p/123 ,
where Q is the volumetric flow rate and ∇p is the pressure
gradient applied to the fluid. Using Darcy's Law, an expression
for parallel plate permeability (kf), in units of length2, is ob-
tained: μ=k W /12f

2 .
Assuming isothermal conditions, mass transfer in fracture

system includes fluid flow within the fracture and leak-off into
the reservoir matrix. It is also assumed that the cubic law is
valid in the fracture. By taking into account that the fracture
aperture is variable over time, mass continuity equation can be
presented as follows:
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where W is fracture opening, v is the fracturing fluid velocity
vector, υl is leak-off from one surface of fracture into rock
matrix, ( )Q tinj is the injection rate, ( )Q text is the production rate,
δ( )xinj and δ( )xext are the functions that are zero everywhere
except at xinj and xext which are the location of injection and
extraction wells accordingly. The governing equation for fluid
flow inside fracture system is derived by substituting the fluid
mass continuity Eq. (2) into the Cubic law:
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in which the fluid pressure on the fracture surface, the fracture
aperture, and leakoff from the fracture surface into the rock
matrix are unknown. These unknowns should to be calculated
during solution procedure for a given history of injection and
extraction rates.

3. Numerical implementation

3.1. Discretization of principal relations

To analyze a fracture system during an arbitrary injection
or extraction period, partial differential Eqs. (1) and (3) should
be solved simultaneously with corresponding boundary and
initial conditions. These two equations are coupled via the
fluid pressure inside fracture and fracture aperture.

Governing Eq. (1) with an infinite boundary, fracture sur-
face boundary, and initial in-situ condition is solved numeri-
cally using a discontinuity technique. In the discontinuity
method, fractures are considered as surfaces across which
normal and two shear displacement components and fluid flux
are discontinuous. Hence, the stresses and pore pressure dis-
tributions in the field depend on the quantity of dis-
continuities on the fracture surface as well as the corre-
sponding in-situ stresses and pore pressure. By invoking the
poroelastic displacement discontinuity technique,16,17 the
stresses and pressure at any point can be evaluated using the
strengths of the DDs, fluid flux discontinuities, and in-situ
stresses and pressure:
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where σ ( )tx,ij n is the “ij” component of stress tensor at point x
and time tn, ( )p tx, n is the pore pressure at point x and time tn,

A is cracks surface, σ χ( − − ′)t tx ,ijkn
id represents induced in-

stantaneous “ij” stress components at time t and location x
due to unit instantaneous DD in “kn” directions occurring at
time ′t and location χ, χ( ′)D t,kn is the strength of instantaneous

DD in “kn” directions at time ′t and location χ, σ χ( − − ′)t tx ,ij
is

is induced instantaneous “ij” stress components at time t and
location x due to unit instantaneous fluid source at time ′t and
location χ, χ( ′)D t,f represents the strength of instantaneous
fluid source (equal to υ2 l) at time ′t and location χ,

χ( − − ′)p t tx ,ij
id denotes induced pore pressure at time t and

location x due to unit instantaneous DD in “kn” direction oc-
curring at time ′t and location χ, χ( − − ′)p t tx ,is is the induced
pore pressure at time t location x due to unit instantaneous
fluid source occurring at time ′t at location χ, σ ( )x, 0ij is ‘ij’
component of in-situ stress tensor at location x , ( )p x, 0 is in-
situ pore pressure at location x .

To calculate the strength of DDs and the fluid source dis-
continuity (leakoff), Eq. (4) is considered on the fracture surface
(i.e. x is located on A) and the temporal integrals of the in-
stantaneous fundamental solutions are expressed in terms of
continuous fundamental solutions.18,19 In this manner, temporal
integration is circumvented. Moreover, by discretizing tn into “s”
increments of Δt , representing the boundaries of all fractures by
“N” quadrilateral four node elements, assuming constant DDs and
linear variation of fluid source intensities across each element, the
boundary integral Eq. (4) can be re-written as:

R. Safari, A. Ghassemi / International Journal of Rock Mechanics & Mining Sciences 84 (2016) 47–5848



Download	English	Version:

https://daneshyari.com/en/article/808998

Download	Persian	Version:

https://daneshyari.com/article/808998

Daneshyari.com

https://daneshyari.com/en/article/808998
https://daneshyari.com/article/808998
https://daneshyari.com/

