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a b s t r a c t

Propagation process of pre-existing flaws in brittle rock materials are simulated using peridynamic
theory, in which it is assumed that particles in a continuum interact with each other across a finite
distance. Since damage is incorporated at the level of these two particle interactions in peridynamic
theory, localization and fracture of materials occur as a natural outgrowth of equations of motion and
constitutive models. Numerical simulations of notched semi-circular bend (NSCB) tests and mix mode
fracture in a tension–shear rock sample are performed. The effects of array of multiple pre-existing flaws
on the propagation process in rock-like materials subjected to uniaxial tensile loads are investigated. The
propagation process of macroflaws and microflaws in rock-like materials subjected to uniaxial tensile
loads are simulated.The failure modes of rock sample containing the different array of pre-existing flaws
are studied. It is found that the present numerical results obtained from peridynamic theory are in good
agreement with the previous experimental and numerical results.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rock masses contain various types of pre-existing flaws. The
propagation process of these pre-existing flaws under compressive
and tensile loads are significant in the study of rock engineering.
Extensive study has been done on crack propagation in the different
rock-like materials under uniaxial compression in 2D experimental
studies1–10 and numerical studies11-16. However, the previous ex-
perimental and numerical studies mainly focus on the propagation
process of the pre-existing flaws in rock-like materials under uniaxial
compressive loads, while the experimental and numerical studies on
the propagation process of the pre-existing flaws in rock-like mate-
rials under tensile loads is very limited. The main reason is that it is
very difficult to investigate crack propagation process in rock-like
materials under tensile loads in experimental studies. In fact, the
failure of rock masses is not only due to compressive loads, but also
due to tensile loads. For example, the excavation of tunnels may lead
to the occurrence of tensile stress in the surrounding rock masses.
The failure of the surrounding rock masses around tunnels occurs
when the value of tensile stress is more than that of the uniaxial
tensile strength of rock masses. Moreover, since the uniaxial tensile

strength of rock masses is smaller than the uniaxial compressive
strength of rock masses, the failure of rock masses subjected to
tensile loads is easier than that of rock masses subjected to com-
pressive loads. Therefore, it is important to numerically investigate
the propagation process of the pre-existing flaws in rock-like mate-
rials under tensile loads.

Many numerical methods are put forward to model the propaga-
tion process of flaws by researchers. The finite element method (FEM)
has been applied to investigate crack growth and coalescence. In the
finite element-based method, singular crack-tip elements are fre-
quently encountered.17 Because of the crack tip stress singularity, ex-
ternal fracture criterion must be introduced to determine the crack
coalescence and bifurcation, and the problem of the crack nucleation is
still not solved.18 In order to overcome the above difficulties, the ex-
tended finite element theory19 is proposed to simulate the propaga-
tion of cracks. Although many problems of cracks are solved by virtue
of the extended finite element method, bifurcation criterion must still
be introduced when displacement is discontinuous, and when multi-
ple crack interaction and bifurcation are involved. Besides, a series of
difficulties are encountered for the problem of the three-dimensional
cracks by the XFEM. In order to solve the problems of interactions
among cracks and bifurcation phenomenon of multiple cracks,
meshless methods are developed.20 For example, the propagation of
cracks can be simulated by Smooth Particle Hydrodynamics (SPH).
However, tensile instability problems are encountered in SPH.21 The
molecular dynamics can be applied to model the propagation of
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cracks. However, the molecular dynamics has some shortcomings,
such as the longer computational time and the lower computational
efficiency.22 The phase-field theory can also be applied to model the
fracture of the brittle material, in which any external criteria does not
need to be adopted.23

In order to overcome the aforementioned shortcomings, peri-
dynamic theory (PD), which is a meshless numerical method
based on the nonlocal concept, is introduced to model bifurcation
and coalescence of cracks. It is assumed that particles in a con-
tinuum interact with each other across a finite distance, its for-
mulation is by integral equations rather than partial differential
equations.24 Therefore, the peridynamic method (PD) can be ap-
plied to model the problems of continuous or discontinuous
displacements.25–27 The peridynamic method (PD) needs not to
make use of any external criteria. Moreover, it breaks through the
singularity problem of crack tips, it has the virtue of meshless
methods and molecular dynamics method, and it avoids the lim-
itations of calculation dimension of molecular dynamics method.
Based on the peridynamic method, the bifurcation and coales-
cence phenomenon of cracks can be taken place spontaneously.
Growth velocity and branching angle of the cracks can be modeled
correctly, especially for the brittle material.28

Both the peridynamic theory and the phase-field theory can be
applied to model the fracture of the brittle material, and they do
not need any exterior criterion. However, there are some differ-
ences between the peridynamic theory and the phase-field theory.
The differences are summarized as follows: (1) The peridynamic
method is a meshless particle method, which is based on a non-
local theory. In peridynamic method, materials are discretized into
some particles with mass. While the phase-field theory is a mesh
element method, in which materials are discretized into some
meshes. (2) For the peridynamic theory, the governing equations
are in integral form, whereas for the phase-field theory, the gov-
erning equations are of partial differential form. (3) The physical
meaning of s is different. In peridynamic method, the parameter s
is the bond stretch, whereas in the phase-field theory, the para-
meter s is an additional continuous field.

2. Basic theory

The peridynamic theory (PD) was proposed by Silling.29 The
peridynamic equation of motion is given by29:
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where xρ ( ) is the mass density, H is a neighborhood of the
material point / 1.0sδ δ = , b x t,( ) is a prescribed body force density
field of the material point x k( ), which represents the external force
per unit reference volume square, t u u x x t, ,k j j k j k( − − )( )( ) ( ) ( ) ( ) ( ) and
t u u x x t, ,j k k j k j( − − )( )( ) ( ) ( ) ( ) ( ) are respectively the force density vector
of the material point x k( ) and x j( ).

For an isotropic and elastic material, the following formulation
can be expressed as29:
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where f u u x x t, ,j k j k( − − )( ) ( ) ( ) ( ) and f u u x x t, ,k j k j( − − )( ) ( ) ( ) ( ) are
respectively the pairwise force function between the material
point x k( ) and x j( ), α is the coefficient of thermal expansion of the
material, TΔ is uniform temperature change; s k j( )( ) and s j k( )( ) are
respectively the bond stretch between material point x k( ) and x j( ), it
is defined by:
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where x x t,j kμ ( − )( ) ( ) and x x t,k jμ ( − )( ) ( ) are respectively a his-
tory-dependent scalar-valued function between the material point
x k( ) and x j( ). The function μ it is given by
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where s0 is the critical stretch for bond failure; for plane stress
problem, when critical stretch value is obtained, it is defined as
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where E is the elastic modulus;δ is a positive number, which is
called the horizontal radius; the work G0 required to break all
bonds per unit fracture area is then found from
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where c k( ) and c j( ) are respectively a “spring constant” of ma-
terial point x k( ) and x j( ), which are described respectively as
follows:
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where E k( ) and E j( ) are the elastic moduli of the material points
x k( ) and x j( ).

In order to model the fracture, a notion of local damage30–32 at
a point is introduced, which is defined as
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where x t,kφ ( )( ) is local damage value of any point x k( ), its ranges
are x t0 , 1kφ≤ ( ) ≤( ) ,with 0 representing virgin material, 1 re-
presenting the complete disconnection of a point from all of the
points with which it initially interacted.

Substituting Eqs. (8) into (2), the following expression can be
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