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a b s t r a c t

In this article we present and verify an algorithm for modeling hydraulic fracturing in complex fracture
geometries. The method is built upon an existing model which uses the discontinuous deformation
analysis for simulation of rock mechanics and upon a finite volume fracture network model for
simulation of compressible fluid flow in fractures. Improvements are made to the fluid, contact and
coupling components of the existing algorithm to increase its accuracy and stability. The model is
successfully benchmarked against the analytical solution for the opening profile of an internally
pressurized Griffith fracture, and against the semi-analytical solution for the pressure and opening
profile of a bi-wing hydraulic fracture propagating under conditions of no leakoff and no toughness.
Additionally, the model is verified through comparison with the results of a hydraulic fracturing
experiment that examined propagation of a high-viscosity fracturing fluid in an impermeable medium.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fracturing is a technique widely used in the energy
industry for increasing the permeability of natural gas and
geothermal systems. In a typical hydraulic fracturing operation,
highly pressurized fluid is injected into low-permeability rock
formations to create fractures in the rock which act as channels for
fluid flow. As hydraulic fracturing has become more widespread, a
variety of computational tools have been developed to aid in the
hydraulic fracturing design process. Among these are a suite of
analytical and semi-analytical solutions [1,2] based around the
classic Perkins-Kern-Nordgren (PKN) [3,4] and Khristianovich-
Geertsma-DeKlerk (KGD) models [5,6], which can predict the
properties of a bi-wing fracture with fixed geometry. Other tools
include the pseudo-3D (P3D) and planar-3D (PL3D) models [7],
which allow for bi-wing fracture modeling in layered rock media.
Although these tools are widely used, a common limitation of all
of these methods is that they can only model single propagating
fractures confined within a pre-defined vertical plane.

As an alternative, a few methods are currently under develop-
ment which model hydraulic fracturing within complex fracture
geometries [8–11]. Underlying each of these models are individual
procedures for simulating rock mechanics, fluid mechanics and
fracture mechanics. For rock mechanics, the majority of these
methods use either the explicit finite element method (FEM) or
the discrete element method (DEM), both of which are based on

explicit methods for time integration. Similarly, in these applica-
tions the fluid mechanics procedure is also solved using explicit
techniques. Although these methods can successfully model frac-
turing in complex geometries, the use of explicit methods for time
integration requires the use of small time steps and mesh grids for
computational stability, greatly increasing the computational cost
of the overall simulation. As an alternative, this work develops a
fully implicit algorithm for hydraulic fracture modeling based on
the discontinuous deformation analysis (DDA) for the rock
mechanics, which is hereafter referred to as the HFDDA. Hydraulic
fracture modeling based on the DDA was first proposed in [12–14],
which applied the coupling scheme developed in [15] to examine
bi-wing fracture propagation and two-dimensional fracture pro-
pagation in the presence of background fractures. In this article,
the hydraulic fracturing algorithm proposed in [12–14] is
enhanced and verified against two analytical solutions for hydrau-
lic fracture growth in an infinite medium and against an experi-
mental analysis of hydraulic fracture growth in an impermeable
material.

2. Governing equations

2.1. Hydraulic fracture modeling

Hydraulic fracturing of a reservoir begins after a well has been
drilled, and steel pipe and well casing have been inserted to protect
the overlying formations. The well casing is perforated in the
targeted reservoir, allowing the fracturing fluid to be injected and
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to contact the gas bearing rock. Eventually, the rate of injection will
exceed the rate of fluid absorbed by the rock formation, causing the
fluid pressure to build. Once the fluid pressure has reached the
breakdown pressure of the formation, the highly pressurized fluid
will create new fissures and open pre-existing ones in the imperme-
able rock. Modeling of this process requires consideration of a few
key mechanisms. First, fluid mechanics must be considered, either
within the fractures alone, or as a combination of flow within the
fractures and flowwithin the rock matrix. Second, a method needs to
be selected for modeling the deformation of fracture walls as a
response to fluid pressure. Generally, it is assumed that the deforma-
tion of the rock matrix is linear elastic, such that linear elastic
fracture mechanics (LEFM) can be used to describe the stress and
displacement distributions around the propagating fracture. Finally, a
mechanism needs to be included to account for the formation of new
fractures within the system. In typical hydraulic fracturing models,
fracturing of new rock is considered to occur in Mode I only, although
in hot dry rock geothermal modeling, Mode II fracturing is consid-
ered the dominant mechanism [16]. The complexity of the model
and its solution will be directly dependent on the dimensionality of
the original problem, the number of processes modeled, and the level
of detail being considered.

2.2. Fluid flow model

The fluid-flow module in the HFDDA is derived using a finite
volume fracture network form of the conservation equations for
fluid mass and momentum and follows the method applied in
[12,15]. The network comprises fluid nodes connected by fractures
(Fig. 1), which form the spaces between rock blocks. For a fluid
node i, conservation of mass is given by the equation

∂
∂t

ρiV i
� �¼ ∑

k

j ¼ 1
QijþQL;iþCi ð1Þ

where k is the number of nodes j connected to node i, ρi is the fluid
density, Vi is the volume of node i, Ci is the mass injection rate, QL

is the leakoff into the fracture formation, and Qij is the flow rate
along fracture ij. For one-dimensional (1D) flow, the flow rate
along the fracture may be expressed by Poiseuille's Law using the
well-known cubic law

Qij ¼
�ρijw

3
ijhij

12μijLij
pi�pj
� �

¼ �αij pi�pj
� �

ð2Þ

where wij is the fracture width, Lij is the length, hij is the depth
(equal to unity for plane-strain conditions), μij is the fluid viscosity
(assumed constant), pi is the pressure in node i, ρij is the density in
fracture ij, and αij represents the transmissivity of the fracture. The
fracture density and fracture widths may be approximated as the
average of the densities and widths at nodes i and j, respectively.

Leakoff of the fluid may be expressed using Carter's leakoff
coefficient (CL) and the area opened along the walls of each
fracture using the expression

QL;i ¼ �ρi ∑
k

j ¼ 1

CLffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�t0;ij

p hijLij
2

¼ ρiQLV ;i ð3Þ

where QLV,i is the volumetric rate of leakoff from node i, t is the
simulation time and t0 is the time at which fluid first arrives at the
node from fracture ij. For compressible flow, fluid density is a
function of pressure by the definition

ρi ¼ ρ0 1þcf pi�p0
� �� � ð4Þ

where cf is the fluid compressibility, and ρ0 and p0 are a reference
density and pressure, respectively. Substitution of Eqs. (2)–(4) into
Eq. (1) and application of a forward discretization in time yields
the final form of the fluid flow equation for each node, given as
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Note that this equation differs from the similar equations in [15]
and [13,14], as it accounts for leakoff and uses a fully implicit
method to describe the change in pressure resulting from the
change in volume of the node itself. For all of the nodes in the
fracture system, Eq. (5) can be rewritten as the matrix system

Ap¼ B ð6Þ

where p is the vector of unknown pressures at time tþΔt, A is the
matrix of coefficients for the unknown pressure vector, and B
includes the terms on the right hand side of Eq. (5). In Eq. (6), for a
given rock geometry, all of the terms in A and B are known except
for the average fracture density ρij, which is part of αij in the
matrix A, and is dependent on the fluid pressures by the relation-
ship in Eq. (4). Thus for a given fracture geometry determined by
the DDA, Eq. (6) must be solved iteratively to reconcile the average
densities ρij in A at time tþΔt with the pressures at time tþΔt.

One difficulty that arises when solving Eq. (6) is that there is no
constraint on the pressures in the system to be positive. If the void
volume at a fluid node increases beyond the volume of fluid
contained within it, the pressure at that node will become
negative, a situation which physically would not happen. To
remedy this problem, if a node has a negative pressure in the
HFDDA after the solution of Eq. (6), a zero pressure boundary
condition is assigned to that node and Eq. (6) is resolved. However,
to ensure conservation of mass, the amount of fluid that flows into
these boundary nodes must also be calculated (Fig. 2). Returning
to Eq. (5), when a zero pressure condition is assigned to a node,
the volume of fluid in the node at the new time (VtþΔt

i ) becomes

Fig. 1. Example of fluid and rock system showing various components within
the HFDDA.

Fig. 2. Geometry demonstrating the void space and fluid volume at fluid nodes
where zero pressure bounds are assigned.
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