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a b s t r a c t

This paper presents both a numerical and an analytical approach for tunnel excavation and support
mounting. The three-dimensional aspect of the tunnel face advance and the lining installation is
simulated by a two-dimensional study assuming the hypothesis of gradual decompression of the
primary stress on the outline of the tunnel. The numerical approach consists of a tunnel axis in an elasto-
viscoplastic rock mass and a concrete elastic lining. This study emphasizes some important factors that
influence the tunnel calculation, such as tunnel face, history of excavation phases, timing of the lining
mounting, lining stiffness, and depth of the tunnel. The analytical approach is based on the determina-
tion and integration of the rock–lining interface differential equation. The author presents the analytical
solution for (a) constant and non-constant lining pressure, and (b) taking into account the tunnel face
influence. The comparison of the numerical results with the analytical solution is performed, and a good
agreement is obtained.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The supported or unsupported tunneling problem is widely
investigated both analytically for simple geometries and/or loadings,
e.g. [1–7], but especially numerically for more complex conditions
e.g. [7–21]. The use of advanced time-dependent behavior and
damage models for rock and soil type materials for tunnel calcula-
tion represents a great interest. Critescu [1] provided a constitutive
elastoviscoplastic model with energetic damage evolution incorpo-
rated, used to determine remarkable analytical results for under-
ground openings, while Pellet et al. [2] presented a constitutive
elastoviscoplastic model with anisotropic damage described by a
second rank tensor. Also, important analytical results are presented
by Wang et al. [3] concerning the sequential excavation problem
in viscoelastic rock mass with a detailed parametric analysis of
different factors of the problem, by Simionescu [4] for circular and
non-circular openings including thermal effects, by Sulem et al. [5]
for tunneling problems both by analytically (convergence-confine-
ment method) and numerically approaches.

Important FE implementation of time-dependent models along
with case studies are presented also, for instance, just to mention
only a few. Barla et al.[9] used two different elastoviscoplastic
models to perform a numerical analysis of tunnels in squeezing
conditions, along with the Lyon–Turin Base Tunnel taken as a case

study. Shalabi [10] assessed ground movement and contact pres-
sure on the lining of Stillwater Tunnel (Utah, USA), investigated
by an axisymmetric FE analysis using a power law and
hyperbolic creep.

An important related issue is the complex excavation problem,
e.g. [12–21]. Concerning the geometry and the loading, the
successive phases of the tunnel excavation and support mounting
is a three-dimensional problem. An analysis in the tunneling
direction implies that in most cases a step-by-step method, which
models each excavation step by removal of ground elements at the
tunnel face and activation of lining elements behind the face,
which can be computationally quite inefficient. There are numer-
ical techniques devoted to override this tridimensional aspect of
the problem, e.g. [14].

There are also certain cases when the problem may be
simplified assuming the hypothesis that close to the tunnel face,
on the tunnel outline, the decompression of the primary stress
component is occurring gradually ([5,12]). This hypothesis allows a
2D axisymmetrical approach of the problem, which overcomes the
considerable effort of a 3D numerical calculation.

This paper deals with an analytical and a finite element
solution for the problem of a circular tunnel excavated in an
homogeneous isotropic elasto-viscoplastic rock mass. The numer-
ical model consists of the successive phases of the excavation and
support mounting, emphasizing the role of two important factors
of the analysis, namely the time and the tunnel face influence,
taking into account the 3D aspect of the problem. A similar
problem is analytically approached by determining the solution
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of the differential equation of the rock–lining interface displace-
ment. A comparison between the two solutions is presented and
good results are obtained.

For the excavation problem, an important factor is the time effect
and it is involved at least in two different aspects: the rheological
behavior of the rock mass and the excavation history. Moreover, the
tunnel support mounting determines a problem of interaction.
Another important factor in the analysis of ground–support inter-
action, during the excavation, is the tunnel face influence. For
instance, since the behavior of the rock-mass is viscoplastic, rock
pressure on the lining increases in time. On the other hand, closer
the lining is installed to the tunnel face, more the pressure at the
rock–lining interface increases with the advance of the tunnel face.

The state of stress and strain around a lined tunnel depends
explicitly on the mechanical and geometrical characteristic of the rock-
mass and the support; the excavation conditions, such as excavation
rate, generally the excavation phases; the support mounting condi-
tions, especially the support mounting time after the excavation and
the distance between the lining and the tunnel face, see e.g. [12].

In this paper, the numerical calculations are performed with a
finite element code called CESAR [22] made in LCPC-Paris inwhich the
viscoplastic module is coded and implemented by the author. The
viscoplastic module is presented in [7], [8] and its validation with
experimental data and available analytical solution or other numerical
codes, as well, in [7,8,12]. The constitutive law used in this approach is
proposed by Cristescu [1] and it is briefly presented further.

2. Formulation of the problem

Consider the following boundary problem: the rock mass is an
infinite body in which a circular opening is made, assuming then
that the underground opening is at a certain depth characterized
by a hydrostatic primary (initial) stress, rP�P1, where P¼γh, h is
the depth at which the tunnel is dug, γ is the specific gravity of the
rock and 1 is the unity tensor.

Since the tunnel possesses a circular geometry, the rock-mass
and the lining mechanical properties are such that they do not
depend on the angular coordinate θ and the far stress field in situ is
hydrostatic, the problem is an axisymetrical one in Orz plane
(Fig. 1). Consequently, the primary stress components sv and sh

are assumed equal. The boundary conditions are presented in Fig. 1.
Cristescu’s elasto-viscoplastic constitutive law [1] is used for

the rock-mass and elastic behavior for the lining. We present
briefly the constitutive hypothesis and the constitutive model.

1) The rock-mass is considered homogeneous and isotropic. Thus,
the constitutive functions will depend only on the invariants of

the stress and strain tensors. The stress tensor and the strain
tensor will be denotedrandε, respectively (their principal
components will be denoted s1;s2;s3; ε1; ε2; ε3). Among the
stress invariants, those with important physical meaning are:

s¼ ðs1þs2þs3Þ=3 mean stress, s2 ¼ s2
1þs2

2þs2
3�s1s2�

s2s3�s3s1 equivalent stress, or τ¼
ffiffiffi
2

p
=3 s¼

ffiffiffi
2

p
=
ffiffiffi
3

p
IIs0 octa-

hedral shear stress, with IIs0 being the second invariant of the
stress deviator.

2) The displacements and rotations are assumed small, so that
_ε¼ _εEþ _εI , where _εE and _εΙ are the elastic strain rate and the
irreversible strain rate, respectively.

3) The initial yield stress of the material is zero or very close
to zero.

4) The applicable domain for the constitutive equation is considered
for compressive stresses (positive) and bounded by the failure
surface which may be incorporated in the constitutive law.

5) The constitutive equation is

_ε
1
3K

� 1
2K

� �
_s1þ 1

2G
_rþκðr;δÞ 1� WIðtÞ

Hðr;rÞ

* +
∂F
∂r

: ð1Þ

with K, G being the bulk and shear modulus, respectively, 1
being the unit tensor, k represents the viscosity coefficient that
may depend on the stress state and the strain state, and
probably on a damage parameter d describing the history of
the micro cracking the rock was subjected to, and the bracket
o ,4 represents the positive part of respective function: 〈A〉¼
ðAþjAjÞ=2¼ Aþ .
The quantityWIðTÞ ¼ R T

0 rðtÞU _ε
IðtÞdt ¼WI

vðTÞþWI
dðTÞ represents

the irreversible work, being used as a hardening parameter or
internal state variable, split into volumetric and deviatoric parts.
We introduce the damage parameter d, defined by

dðtÞ ¼WI
vðtmaxÞ�WI

vðtÞ ð2Þ
that describes the energy released by micro-cracking during the
entire dilatancy period. In Eq. (2), tmax represents the time for
which WI

v is maximum. The failure threshold is considered to be
the total energy released by micro cracking during the entire
dilatancy process and it is characterized by the following
parameter (constant):

df ¼WI
vðtmaxÞ�WI

vðtf ailureÞ ð3Þ
HðrÞ represents the loading function, generally a function of
stress tensor r with Hðs;sÞ ¼WIðtÞ the creep stabilization
boundary equation, function H depending on the two stress
invariants noted above. FðrÞ represents viscoplastic potential,
that establishes the orientation of _εΙ.
We use the model describing the Borod coal behavior and the
constitutive functions and material constants are as follows. For

Fig. 1. The domain and boundary conditions for the problem in Orz plane along the tunnel axis.
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