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a  b  s  t  r  a  c  t

The  complex  system  required  for carbon  capture  and  storage  (CCS)  encompasses  numerous  sub-systems
with  inter-dependencies  and  large  parameter  uncertainties  that propagate  throughout  the  system.
Exploring  and  understanding  these  inter-dependencies  and uncertainties  is invaluable  for developing
robust  risk  information.  Bayesian  Networks  (BN),  a  decision  support  tool,  are  being  increasingly  used
in  the  broader  risk  assessment  community  and  show  promise  for  use  in  CCS.  BNs  explore  the  depend-
encies  and uncertainties  within  a system  and  have  the  potential  to  provide  a better  understanding  of
risk  than  more  traditional  tools  such  as  logic  trees  or  other  less  integrated  approaches.  Working  with
experts  from  within  the  Cooperative  Research  Centre  for Greenhouse  Gas  Technologies  (CO2CRC),  we
have  developed  a generic  BN structure  for the storage  sub-system  of  CCS  which  can  be  used  to guide  the
development  of  BNs  for  other  CCS  applications  and  for use  in  both  diagnostic  and  predictive  analysis.
This  bi-directionality  provides  one  of the  more  important  benefits  of  BNs; it allows  for  (1)  traditional
bottom-up  risk  assessment  where  the likely  consequences  based  on the expected  state  of  the  system  can
be calculated  and  also  (2)  top-down,  or  outcome  oriented  risk,  where  the  state  of the  system  leading  to
a particular  outcome,  such  as  the  likelihood  of  2%  leakage  in  1000  years,  is  determined.  This  allows  for  a
comprehensive  sensitivity  analysis  which  highlights  important  contributors  to the  risk  and  also  where
additional  knowledge  may  benefit  the  project  and  reduce  uncertainty.  A robust  expert  elicitation  proce-
dure,  for  both  the development  of the  network  structure  and  the  determination  of  event probabilities,  is
an  integral  part  of  the use  of any  such  BN  tool  in  CCS.  Finally,  we  show  the direct  application  of a smaller
CCS  BN  by  the  CO2CRC.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The science behind Carbon Capture and Storage (CCS) is matur-
ing rapidly with an increasing number of projects in operation,
or planned, where CO2 will be injected into deep saline aquifers
or depleted gas and oil reservoirs which are viewed as provid-
ing long term safe storage of CO2. “Long term” in this case is
assumed to mean thousands of years and “safe” means with
minimal risk to multiple Health, Safety and Environment (HS&E)
concerns including leakage of harmful concentrations to humans
or the environment or contamination of natural resources such as
potable groundwater or petroleum deposits. Although the physical
processes involved with CO2 storage are known, there are gaps in

∗ Corresponding author at: GNS Science, 1 Fairway Drive, Avalon, Lower Hutt, New
Zealand.

E-mail address: m.gerstenberger@gns.cri.nz (M.C. Gerstenberger).

the detailed knowledge that is required to produce reliable sim-
ulations or predictions of the processes over the time scales that
stakeholders (e.g., the public and legislators) are interested in. The
effects of these gaps in knowledge on HS&E are explored via risk
analysis and assessment. A detailed summary of these knowledge
gaps is described by Bachu et al. (2007).

Risk is often defined in probabilistic terms as the likelihood of an
event occurring combined with the negative consequences of that
event occurring. Risk assessment in this context is taken to be the
analysis of the risks and measures to reduce or control those risks.
Risk assessment is common in many domains outside of CCS which
include the nuclear and aerospace industries and earth sciences
where risk due to hazard from earthquakes, volcanoes, tsunami and
landslides are considered. A number of risk assessment tools have
been proposed as being applicable to CCS including the use of Fea-
tures, Events and Processes databases (FEPS). FEPs originated in the
nuclear industry (Savage et al., 2004) and provide scenarios for risk
assessments. Since 2004 Quintessa has provided an online database
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for CCS that has recently been extended by the European Union
funded project RISCS (2014). FEPs can be used in the initial stages
of a risk assessment to prioritise possible scenarios, as well as for
auditing of a particular risk assessment to ensure no possible sce-
narios were omitted (Gerstenberger et al., 2008). RISQUE (Bowden
and Rigg, 2004) is a method which has demonstrated its utility as
a site selection tool and which has been applied for example at
the In Salah CCS Project (Dodds et al., 2011), Weyburn (Bowden
et al., 2013) and a number of Australian CCS projects. It is based
around the assessment of six Key Performance Indicators (KPI) that
relate to containment, effectiveness, viability of the project, wider
community benefits, community safety and community amenity.
Each of the KPIs are considered separately with each KPI having
its own risk metric. Expert panels are used to assign probabilities
to events contributing to each of the KPIs and then Monte Carlo
simulations is used to calculate the risk metric for each KPI. The
end result is a risk index for all KPIs that is used to rank a set of
sites. Another risk assessment tool is the decision support software
TESLA (Benbow et al., 2006) which is based on evidence support
logic. This is done via the use of 3-value logic and an algorithm
based on interval probability theory. A systematic approach to risk
assessment based on logic trees, a method popular in seismic haz-
ard and risk has also been proposed (Gerstenberger et al., 2009). A
different, but systematic approach to risk assessment was  used in
Weyburn CCS project (Wilson and Monea, 2004) where aspects of
the system were analysed using many different independent tools
but giving a comprehensive assessment of the system.

Bayesian Networks (BN) (Pearl, 1985) are a common tool in
other fields of risk assessment and show promise for providing a
robust risk assessment in CCS (e.g., Kvien et al., 2013; Dahm et al.,
2010; Yang et al., 2012). BNs are a type of flexible and probabilis-
tic graphical modelling where the key variables in the system to
be modelled are described by nodes and the relationships between
nodes by arrows. With this structure the BN captures the key vari-
ables of the system and their relationships. Each variable can have
different states, and the relationship between states of related
variables are quantified by conditional probabilities, with a mathe-
matical base underpinned by Bayes’ Theorem (Price, 1763). In this
paper we explore the applicability of BNs to CCS by introducing a
BN structure for CO2 storage in a saline aquifer that has been devel-
oped with experts from within the Cooperative Research Centre for
Greenhouse Gas Technologies (CO2CRC). The BN structure provides
a template for modelling a variety of different risk questions. As an
example, we present a fully quantified BN that has been applied by
the CO2CRC as a pilot project. We  first discuss BNs in more detail
in Section 1.1. A potentially useful aspect of BNs for understand-
ing risk and optimising the risk analysis procedure comes from the
bi-directionality of BNs. Bi-directionality describes the ability to
propagate the effects of conditional probabilities both backward
and forward in a system.

With a system as complex as CCS, expert elicitation is a critical
part of the risk assessment procedure. Expert elicitation comes with
its own technical difficulties and uncertainties, such as a potentially
large elicitation burden on the experts; while this is not a problem
unique to BNs there is a body of literature focussed on this topic
with a key focus on reducing the number of probabilities to elicit
(e.g., van Engelen, 1997; van der Gaag et al., 1999; Tang and McCabe,
2007; Wisse et al., 2008). What is clear is that adequate time and
resources need to be allowed in CCS projects for the development of
a robust and defensible risk analysis without hindering the project
in an unnecessary way.

1.1. Bayesian Networks

Bayesian Networks (BN) are a type of probabilistic, graphi-
cal model, where the system being modelled is represented by a

Fig. 1. An example of a simple two node BN where each node has two states.
The right hand part of the graph show the effect of adding evidence, i.e., saying
a  particular event “Rain on Monday” occurred.

Directed Acyclic Graph (DAG) and which provides the means to
encode the joint probability distribution for a set of variables rep-
resenting the system (Heckerman, 1995). BNs, also called causal
or probabilistic networks, are largely developed by the artificial
intelligence community and they have been applied in a number of
diverse problem domains including ecological modelling (Uusitalo,
2007), medical diagnosis (Wiegerinck et al., 1999), image classifi-
cation (Malka and Lerner, 2004) and fraud detection (Kirkos et al.,
2007). A number of publications have used BNs as a method of
addressing risk assessment, such as in nuclear waste disposal (Lee
and Lee, 2006), neural tube defects (Liao et al., 2010) and in seismic
risk (Bayraktarli et al., 2006). Recently BNs have started to make
their way  into the CCS community for analysing safety risk related
to loss of containment in CO2 transport (Kvien et al., 2013), for
combining evidence from multiple CO2 leak detection technolo-
gies in geological storage (Yang et al., 2012) and for discriminating
between natural, triggered and induced earthquakes in areas that
have geo-engineering operations (Dahm et al., 2010).

Although probabilistic models based on DAGs have been in
existence since the 1920s (Wright, 1921) it was the need for
a mathematically robust method capable of top-down (causal)
and bottom-up (diagnostic) reasoning in the presence of evidence
(Pearl and Russell, 2001) that gave researchers the impetus to
develop the approach that became BNs. Pearl (1993) describes
these motivations in detail and thorough introductions to BNs are
given in Pearl (1991, 1985) and Neopolitan (1989). Here we  give a
basic introduction with a very simple example.

When considering a BN model of a system of interest, the com-
ponents, or parameters of interest, of the system are represented by
nodes and the conditional dependencies between the components
are represented by edges (arrows). Nodes that are not connected are
conditionally independent of each other, i.e., they do not directly
effect one another. The direction of the arcs intuitively follows the
flow of influence from parent to child; however, this does not limit
the BN to uni-directional reasoning as is discussed later. Each of
the nodes has two or more discrete states that fully describe the
possible ranges of values of that node within the BN model. States
represent discrete probability ranges and not point values. Con-
ditional Probability Tables (CPT) attached to each node determine
the causal effects of changes in the state of a parent node on a child
node and propagate these effects through to all of its descendants.
The CPTs express the probabilities that a node will assume a partic-
ular state given the states of all parent nodes. The exact mechanism
for propagating the effect of a change of node state through a BN
is based on Bayes’ theorem (Price, 1763) which was named after
Reverend Thomas Bayes (1702–1762).

Fig. 1 shows a basic example of a BN with only two  nodes: Event
A; “Rain on Sunday”; and Event B; “Rain on Monday”. Each node
has two states “Yes” and “No”. Without any prior knowledge of
what actually occurs on either of these days, the probability of
having rain is the same for both days. The node “Rain on Sunday”
has no parent nodes, and therefore the CPT has only two  entries,
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