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a b s t r a c t

Phenomenological modeling of anisotropic damage in rock raises many fundamental thermodynamic
and mechanical issues. In this paper, the maximum likelihood method is used to analyze the performance
of the Differential Stress Induced Damage (DSID) model recently formulated by Xu and Arson [1]. The
stress/strain relationship is a nonlinear function of parameters including unknown constants (i.e.,
damage constitutive parameters) and known variables (e.g., elastic parameters and controlled stress
state). Logarithmic transformation, normalization and forward deletion are employed, in order to find the
optimum number of constitutive parameters, as a trade off between accuracy and simplicity. For Eastern
France claystone subject to deviatoric stress loading (e.g., triaxial and proportional compression loading),
it is found that (1) only one damage parameter (a2) is needed in the expression of the free energy to
predict stress/strain curves; (2) a2 controls the deviation of the current principal directions of stress to
the principal directions of damage; (3) model parameters involved in the damage criterion can be related
to a2. As a result, a2 is the only parameter needed to model differential-stress induced damage in Eastern
France claystone. It is also shown that within the set of assumptions made in this study, the DSID model
is not sensitive to the initial damage threshold C0, except for C04106 Pa, a range of values in which only
one constitutive parameter becomes insufficient to predict the stress/strain curves of damaged claystone.
Coupling probabilistic calibration and optimization methods to numerical codes promises to allow
adapting the complexity of anisotropic damage models to different rocks and stress paths.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

At present, 85% of the energy power consumed in the world is
produced by fossil fuel combustion [2,3], which has raised increasing
interest in renewable energy technologies, non-conventional oil and
gas reservoirs, and nuclear power. Innovative nuclear fuels and
reactors depend on the economical and environmental impacts of
waste management [4]. Disposals in mined geological formations are
viewed as potential consolidated storage facilities before final disposi-
tion [5]. Rock damage is therefore a core issue in energy production
(e.g., hydraulic fracturing [6–8] and geothermal energy extraction
[9–11]) , energy storage (e.g., Compressed Air Energy Storage [12–14])
and waste management (e.g., nuclear waste disposals [15–19] and
carbon capture [20–23]). Continuum Damage Mechanics (CDM)
provides an efficient framework to bridge the failure plane scale with
the pore and the crack scale. Damage is a thermodynamic variable
used to (1) represent crack initiation, propagation and coalescence in
rock; and (2) model the subsequent changes of rock mechanical,
physical and chemical properties at the scale of a Representative
Elementary Volume (REV) [24,25].

CDM-based models have an important practical interest for
engineers, and are based on rigorous closed-form formulations.
However, the difficulty to determine the magnitude of material
parameters is overwhelming. The maximum likelihood method
has been widely used in the past to find the optimum values of
unknown parameters in probabilistic models. This method can
also be employed to determine the standard error associated with
a model, in order to assess the accuracy and reliability of this
model. Also, it is possible to establish a procedure to remove
unnecessary parameters or combine the ones which are correlated
with each other. As a result, simpler models can be obtained, with
fewer parameters. The maximum likelihood method also provides
some insight into the relative importance of parameters in real
physical problems. For instance, Ledesma et al. [26] used this
method to find a constitutive model for soft biological tissues. Jung
et al. used a Bayesian updating method (based on the maximum
likelihood method) to find a constitutive law in a simplified
unified compression model for soil deposits [27], and to improve
soil classifications [28]. Medina-Cetina and Arson [29] and Arson
and Medina-Cetina [30] used the Bayesian paradigm to calibrate a
damage mechanics model for rock, and to interpret the mathe-
matical independence of the constitutive parameters. Boyce and
Chamis [31] used both the maximum entropy principle and the
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maximum likelihood method to establish probabilistic constitutive
relationships for cyclic material strength models. Gardoni et al.
[32,33] used a total of 384 strand test specimens to study self-
consolidated concrete exposed to various void, moisture, and
chloride concentration conditions. Using experimental results
and the maximum likelihood method, a probabilistic model was
developed. Tsuchiya et al. [34] estimated the Weibull modulus of
brittle materials using the maximum likelihood method. Instead of
using a linear regression method, Huang et al. [35] employed the
maximum likelihood method to predict concrete compressive
strength using ultrasonic pulse velocity and rebound number.
Trejo et al. [36] and Pillai et al. [37] identified and quantified
important parameters influencing the corrosion and tension capacity
of strands in post-tensioned bridges.

In the work presented in the following, the maximum likelihood
method is used to analyze the performance of the Differential Stress
Induced Damage (DSID) model recently formulated by the authors
[1], with a particular focus on the stress/strain response of Eastern
France claystone subjected to deviatoric stress loading. The main
mineral and mechanical properties of the claystone under study are
summarized in Section 2, along with the main constitutive models
proposed so far. Section 3 outlines the thermodynamic framework
of the DSID model, and provides the state-of-the-art of the methods
available to calibrate the related damage constitutive parameters.
The proposed probabilistic model is presented in Section 4: known
variables and unknown parameters are identified first, the imple-
mentation of the maximum likelihood method is explained then,
and a probabilistic strategy is finally established for the use of the
DSID model. Section 5 highlights the need for a parameter calibra-
tion, and methodically presents the optimization procedure used in
this study. Section 6 discusses the significance of the results, and
provides further performance assessment of the DSID model.

2. Overview of the characterization and modeling of claystone

2.1. Mineral composition and physical properties

Claystone is a mudrock – a class of fine grained siliciclastic
sedimentary rocks. More than 50% of the composition of claystone
is clay-sized particles, less than 4 μm in size. Claystones contain
quartz, feldspar, iron oxides, and carbonate minerals (in variable
proportion, depending on the geological formation). In general,
claystones tend to have low permeability but high mechanical
strength. Clay minerals such as smectite and illite are very
sensitive to the saturation degree, which can result in pronounced
plastic deformation [38]. The behavior of claystone is more brittle
when calcite content increases, and inversely becomes more
ductile when the quantity of clay elements increases [39]. There
is also a strong dependence of the mechanical behavior on the
confining pressure, marked by a transition from a fragile towards a
ductile behavior [40]. Table 1 summarizes the mineral and physical
characteristics of claystones.

2.2. Experimental characterization

Claystones are sedimentary rocks: they are structured in layers
by the process of deposition. At the microscopic scale, anisotropy
is manifested by the sliding of clay sheets and the twilling in a few
large calcite grains – two phenomena which are related to the
distribution of voids in the clay matrix. At the scale of the
laboratory sample (Representative Elementary Volume, REV),
claystone anisotropy can be seen during a hydrostatic compression
loading (e.g., [39]): the response of the material to the applied
loading exhibits a different deformation in the axial and radial
directions. In order to capture the resulting intrinsic anisotropy of Ta
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