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The paper models the first stage of the process of pillar extraction in a coal mine. The problem of
understanding how a coal mine roof collapses after secondary cutting of the supporting pillars to create
small supporting snooks is considered. The fracture of the roof is considered when a set of snooks have
failed and the roof must support itself between two pillars. Models that account for the relative
importance of the overburden weight on the roof and the compressive stresses in the roof are examined
using a simple strut and beam theory.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The need to return to old mine workings and extract a signi-
ficant fraction of the remaining coal is becoming of increasingly
economic importance and viability. In the current methods of
secondary mining, the existing large pillars of coal that have been
left to support the roof are cut away and, as the work proceeds back
up the mine, the roof is left to collapse. This collapse needs to occur
in a safe and controlled manner and this is done by carefully cutting
the pillars into smaller structures, called snooks, so that these fail in
a manner that lets the roof fall slowly and the working area remains
free from falling material. Understanding how the snooks fail and
how the roof fractures is central to creating a safe working
environment. Determining how much of the pillars can be cut
and hence how small the snooks can be made determines the
fraction of coal that can be taken by this secondary mining method.

There are two stages in pillar extraction [1]. In the first stage
several pillars are extracted and replaced by snooks. The load on
each snook is increased as more and more pillars are extracted.
When a snook fails, it fails violently. After about seven or eight
pillars have been extracted the snooks fail. The roof layer cracks,
primarily by bending induced tension. Eventually the roof and
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overburden collapse. In this first stage the roof layer can be
modelled as a beam which is clamped at each end at a pillar.
After the first collapse of the roof, the failure will occur at more
frequent intervals. In this second stage of pillar extraction, one end
of the roof layer will be supported by a snook and the other end by
a pillar which is the working face. The end at the snook will no
longer be clamped because of the failure of the surrounding rock
and may be modelled as simply supported or hinged.

In this paper we consider the first stage of pillar extraction.
Each end of the roof layer is clamped at the pillar and a number of
snooks fail. The roof remains in place and supports the local
weight of the rock and the large compressive stresses due to the
overburden. We shall investigate the fracture of the roof and then
summarise our insight into the behaviour.

2. Mathematical model of roof fracture

The problem that we consider is how the roof fractures when
a number of snooks fail. There is considerable previous work on
analyzing such situations which is well reviewed in [2]. For an
elastic beam with no joints and no axial compressive stress
and clamped at pillars at each end, the solutions for the
maximum stress and maximum beam deflection have been
obtained using the beam equation [3,4]. Vertical tensile fractures
form at the pillars and the beam becomes simply supported
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at the pillars. The maximum stress is now at the midspan which is
found to be greater than the previous stress at the pillars.
This leads to fracturing at the midspan and other points of the
beam [5,6].

To analyse the problem of fracturing of the roof we consider the
case where the snooks fail completely and the roof has to be
supported by the strength of the rock. The rock can be taken to
have various constitutive relations but here we take the response
to be elastic and we consider the roof to be made of horizontal
layers of rock each acting as a beam. An elastic beam with no joints
or fractures after an excavation is extremely rare [4]. Our model
will describe the first stage in the fracture of the beam and the
transition from a continuous elastic beam to a voussoir beam
model cut with joints and fractures [2,4,7-9]. We assume that the
roof extends for a long way along the roadway and hence that the
behaviour only varies with distance across the roadway from one
remaining pillar to another. We also assume that the only
displacement is vertical. In practice this beam will be loaded from
three main sources. Firstly the compressive stresses due to the
overburden will create compressive stresses horizontally along the
beam, secondly the beam will have to support its own weight and
thirdly the beam will have stresses transferred to it from adjoining
layers of rock. As an initial investigation we ignore the transfer of
stresses from adjoining layers. Underground layers of rock tend to
separate on deflection [10,4] and such transfer of stress may be
small in cases where the beam may have displaced sufficiently to
detach from layers above it. Hence our idealised problem is to
investigate buckling of a beam that has a horizontal stress acting
along its length due the overburden stress and that has to support
its own weight.

This problem is therefore a combination of the conventional
Euler-Bernoulli beam theory and the theory of the Euler strut. The
beam is taken to be made of homogeneous material of thickness h.
We take the mine to be at a depth H. We can expect the horizontal
stress in the rock to be kpgH where k is the lateral stress coefficient, p
is the average density of the rocks above the depth H and g is the
acceleration due to gravity [1,11,12]. The derivation of this result is
briefly outlined in Section 5. We assume that this stress creates a
horizontal force exerted at both ends of the beam which we denote
by P = hb(kpgH), where b is the breath of the beam. Moreover, the
roof is subjected to its weight per unit length q=pghb that we
assume equally distributed along the beam on all the surface. In
practice we might wish to make a simple extension to partly allow
for other layers above the roof on this beam by adding s to g and still
denoting it by q where s is the applied surface traction per unit
length vertically downwards on the top surface of the beam. Both s
and q have the same effect on the displacement and enter the Euler—
Bernoulli beam equation in the same way [13].

We will use the notation and conventions of Segel and Handel-
man [13]. The coordinate axes are defined in terms of the
undeformed beam. The x;- and x,-axes are along the axes of
principal moment of inertia of the cross-section of the beam with
the x;-axis vertically downwards. The xs3-axis is horizontal and
passes through the centroid of each cross-section. The origin of the
coordinate system is at the centroid of the cross-section of the left
end of the beam. Unit vectors i, j and k are directed along
coordinate axis. The problem is illustrated in Fig. 1.

We use analysis relevant to both an Euler-Bernoulli beam and
an Euler strut. The displacement of the beam from the horizontal
position, xs, vertically downwards in the positive x;-direction, is
denoted by w(x3). An outline of the derivation of the differential
equation for w(xs), has been given by Segel and Handelman [13]
for a beam which is simply supported or hinged at each end. For a
simply supported beam the displacement and its second derivative
vanish at each end. We will consider a beam which is clamped at
each end so that the displacement and its first derivative vanish at
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Fig. 1. A combined beam and strut.

each end. The derivation of Segel and Handelman can be adapted
to a beam for which each end is clamped instead of simply
supported and it can be verified that the same differential
equation for the displacement is obtained. Here we will give a
plausible justification for this differential equation.

Consider first the problem in which the horizontal axial force P
does not act on the beam. Then the bending moment about the
origin, M, which is in the j-direction, has magnitude

2
M= EId—VZV, 1)
X3
where E is the Young's modulus of the roof rock and I is the second
moment of area about the x,-axis given by
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For the static Euler-Bernoulli beam, the transverse angular

momentum balance equation is [13]

M
dx§ q 3)

Consider now a beam in which the axial force P acts. The bending
moment about the origin, M*, is
M* = Mj + w(x3)i x (—PK)

= (M + w(x3)P)j 4)
where M is given by (1). Hence
M* =M + w(x3)P. (5)
Replacing M in (3) by M* we obtain
M
dx3 dx3
Using (1) for M, (6) becomes

4 2
EI‘ZT‘%V + PZTEV =q, (7)

which is the required ordinary differential equation for w(xs). Eq. (7)
agrees with the beam equation derived by Segel and Handelman
[13].

We assume that the ends of the beam are clamped by the
pillars at x3 =0 and x3 =L so that (7) should be considered with
the boundary conditions

=q. ©)

dw .
w(0)=0, dTB(O) =0;

dw
w(l) =0, E(L) =0. ®)

Next, we nondimensionalise the problem (7) and (8). We start by
considering nondimensional variables x3 and w where
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