Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Particle-scale CO₂ adsorption kinetics modeling considering three reaction mechanisms

Dong-Myung Suh*, Xin Sun

Computational Science & Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States

ARTICLE INFO

ABSTRACT

Article history: Received 4 April 2013 Received in revised form 28 May 2013 Accepted 31 May 2013 Available online 2 July 2013

Keywords: CO₂ capture Reaction kinetics Sorbent particle Simulation Adsorption In the presence of water (H_2O), dry and wet adsorptions of carbon dioxide (CO_2) and physical adsorption of H_2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO_2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the three reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent.

The weight gained by each adsorbed species, CO_2 and H_2O , is difficult to determine experimentally. It is known that more CO_2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO_2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO_2 capture. This study addresses those questions by modeling CO_2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO_2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

Published by Elsevier B.V.

1. Introduction

Anthropogenic emissions of carbon dioxide (CO₂), one of the most critical species in greenhouse gases (Pachauri and Reisinger, 2007), is considered as the main culprit to global climate change (Rogner et al., 2007). In the United States, about 83% of greenhouse gases are produced from the burning of fossil fuels (EIA, 2006a), which emits about 2 billion metric tons of CO₂ annually (EIA, 2006b) and amounts to roughly two-thirds of the total U.S. power sector CO₂ emissions (Ciferno et al., 2009). To mitigate the emission problem, various government agencies and industries have been developing carbon capture, transport, and long term sequestration technologies (Figueroa et al., 2008).

Generally speaking, three types of approaches are being examined for CO_2 capture from fossil-fuel-based power plants: (1) pre-combustion, (2) post-combustion, and (3) oxy-combustion. In pre-combustion capture, CO_2 is removed from the fuel stream before it is burned, and H_2 is sent to a combustion turbine. For example, a polymer-based membrane with high H_2/CO_2 selectivity was reported by Berchtold (2006). Supported ionic liquid membranes (Ilconich et al., 2007) and lithium silicate-based sorbent (Li et al., 2006) were also developed to select CO_2 from coal-derived syngas. In oxy-combustion, fuel is burned with a mixture of nearly pure O_2 and recycled flue gas, and its flue gas contains mainly CO_2 and water. After removing water by condensation, highly concentrated CO_2 can be easily collected. The drawback of this approach is extracting O_2 from air, which is a costly process. Meanwhile, in post-combustion capture, CO_2 is captured from flue gas produced by the combustion process. Notably, existing power plants can be easily retrofitted with the equipment required for this process (Figueroa et al., 2008). Thus, it is considered the most feasible approach to implement in the near future.

As a post-combustion capture process, aqueous amine-based solvent capture is commercially available, but it is a highly energyintensive and corrosive process. When the process was applied to a power plant, it led to an 80% increase in the cost of electricity (Rao and Rubin, 2002). Unlike the costly aqueous amine-based capture, CO_2 capture using amine-impregnated solid sorbent is attracting researchers' attention with the potential to reduce energy consumption, improve regeneration, enable greater capacity, offer selectivity, and provide ease of handling (Samanta et al., 2012). The calcium looping process is another post-combustion technology, which exploits the reversible gas–solid reaction between calcium oxide (CaO) and CO_2 to produce calcium carbonate (CaCO₃)

^{*} Corresponding author. Tel.: +1 509 375 4436; fax: +1 509 372 4720. *E-mail address:* dongmyung.suh@gmail.com (D.-M. Suh).

Nomenclature

Α	amplitude of reaction
Am0	initial concentration of amine in sorbent
С	mass concentration of species (mol m ⁻³)
Cp	specific heat (J kg ⁻¹ K ⁻¹)
Ď	diffusion coefficient ($m^2 s^{-1}$)
$d_{\rm pore}$	pore size (cm)
$d_{\rm p}$	diameter of particle (m)
ΔH	enthalpy of reaction $(I mol^{-1})$
ΔS	enthalpy of reaction $(I mol^{-1} K^{-1})$
Е	activation energy of reaction $(I mol^{-1})$
G	generation/consumption rate (mol m ⁻³ s ⁻¹)
K	equilibrium constant of reaction
R	universal gas constant (8.314 I mol ^{-1} K ^{-1})
R	reaction rate (mol m ⁻³ s ⁻¹)
r	radial direction (m)
h:	convection mass transfer coefficient of species <i>i</i>
	$(m s^{-1})$
h_{T}	convection heat transfer coefficient (W m ⁻² K ⁻¹)
i i	species index
M	molecular weight $(kg mol^{-1})$
Nu	Nusselt number
D	ambient pressure (Pa)
I Dr	Prandtl number
Po	Poynolds number
Sc	Schmidt number
Sh	Sherwood number
Sn Т	Kelvin temperature (K)
1 t	time (s)
L	time (3)
Superscripts and subscripts	
d	$dry adsorption of CO_2$
i i	species
i	reaction
J k	space index of particle
n	water adsorption
с К	on outer surface
3	wet adsorption of CO-
vv	
Greek	
α	coefficient of finite difference equation in mass
	transfer
в	coefficient of finite difference equation in heat
Ρ	transfer
£	porosity
v	conductivity (W m ⁻¹ K^{-1})
л 0	density (kam^{-3})
μ	$\frac{1}{1}$
μ	r_{1}
U N	stoichiometry
ν	Stotemonieu y

(Abanades et al., 2004). The technology also shows a good prospect for capturing CO₂ effectively (Manovic and Anthony, 2010; Broda and Muller, 2012).

Modeling and simulation studies have been performed on several carbon capture systems for improved performance at different scales. For example, the CO_2 absorption/stripping process with aqueous monoethanolamine (MEA) was modeled based on thermodynamics and reaction rates (Freguia and Rochelle, 2003). The researchers analyzed process variables to find operating conditions at a low-steam requirement. To find the best configuration of the CO_2 stripper, the performance of several alternative designs was simulated and compared (Oyenekan and Rochelle, 2007). CO_2 absorption using a membrane contactor also was studied via modeling and experiment (Hoff et al., 2004). The absorption rate was calculated with changing temperature, liquid velocity, and CO_2 partial pressure. The two-dimensional diffusion-reaction model closely predicted the experimental results. A computational fluid dynamics (CFD)-based model for CO_2 stripping also was developed (Ghadiri et al., 2013). Using this model, the effect of liquid velocity and temperature on stripping performance was investigated. Studies using CFD-based simulation also examined the feasibility of converting existing coal-fired power plants to oxy-combustion (Tigges et al., 2009).

In addition, various modeling and simulation studies regarding CO₂ capture by solid sorbents have been performed. The CO₂ adsorption behavior of amine-functionalized mesoporous silica was modeled using chemical interaction with the amine group and physisorption on the adsorbent's surface (Serna-Gurerrero et al., 2010). The model was applied to several sorbents, and the CO_2 adsorption isotherm of each adsorbent was predicted. In zeolite imidazolate frameworks, the effect of functional group structure on CO₂ adsorption was investigated using molecular modeling (Morris et al., 2010). It showed that polarizability and structural symmetry were the key factors for high CO₂ uptake. Modeling was also used to evaluate the performance and cost of amine-based CO₂ capture systems (Rao and Rubin, 2006). The most cost-effective strategies and key factors in controlling CO₂ levels were proposed, with a fluidized bed reactor considered as the most promising design for CO₂ capture by solid sorbents (Yang and Hoffman, 2009). In this design, heat and mass transfer and chemical reactions in the reactor depend on the interactions of gas and solid phases in the bed (Smolders and Baeyens, 2001). To calculate the two-phase flow in the fluidized bed, several models have been developed (Kato and Wen, 1969; Kunii and Levenspiel, 1990; de Souza-Santos, 2007). When fluidized-bed hydrodynamics is combined with a CO₂ adsorption reaction, device-scale simulations as such can provide more detailed information for improving the reactor design. However, the CFD-based device-scale CO₂ capture predictions depend on accurate models in both the particle-scale reaction kinetics as well as in multi-phase flow simulations.

At the particle scale, CO_2 adsorption by an amine sorbent was simulated using a shrinking core model to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction (Monazam et al., 2011). Lee et al. (2011) proposed a phenomenological model for the adsorption kinetics of amine-impregnated mesoporous sorbent in the presence of water, and the model was fitted to experimental data obtained from thermogravimetric analyses. Recently, Xu et al. (2012) proposed a generalized kinetic model for heterogeneous gas–solid reactions with the introduction of a distinctive layer between reacted and not-yet-reacted regions.

In this study, adsorption phenomena are modeled on the particle scale based on three fundamental reactions occurring in the amineimpregnated mesoporous sorbent in a CO₂ rich environment. The model calculates on the particle scale (1) how different adsorption reactions progress; (2) how the reactions depend on each other; and (3) the amount of each species adsorbed on the sorbent particle resulting from the reactions. Similar particle-based models have been developed and used in several other research areas, i.e., metal sorption with resins (Juang and Lin, 1995), olefin polymerization (McKenna and Soares, 2001), and ozone uptake (Smith et al., 2002), but only for single reaction. In the current study, three different reactions occur simultaneously in the amine-based sorbent particle, assisting each other in one way and hindering in another, which makes particle-scale CO₂ adsorption prediction more difficult. With the successfully developed particle scale reaction kinetics model and the numerical solution algorithm presented here, mass transfer and adsorption phenomena resulted via different reaction Download English Version:

https://daneshyari.com/en/article/8092079

Download Persian Version:

https://daneshyari.com/article/8092079

Daneshyari.com