Accepted Manuscript

Clean power production by simultaneous reduction of NOx and SOx contaminants using Mazut Nano-Emulsion and wet flue gas desulfurization

Cleaner

Shahriar Kouravand, Ali M. Kermani

PII: S0959-6526(18)32348-5

DOI: 10.1016/j.jclepro.2018.08.017

Reference: JCLP 13801

To appear in: Journal of Cleaner Production

Received Date: 16 June 2018

Accepted Date: 02 August 2018

Please cite this article as: Shahriar Kouravand, Ali M. Kermani, Clean power production by simultaneous reduction of NOx and SOx contaminants using Mazut Nano-Emulsion and wet flue gas desulfurization, *Journal of Cleaner Production* (2018), doi: 10.1016/j.jclepro.2018.08.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Clean power production by simultaneous reduction of NOx and SOx contaminants

using Mazut Nano-Emulsion and wet flue gas desulfurization

Shahriar Kouravandal, Ali M. Kermania

a Department of Agrotechnology, Aburaihan Campus, University of Tehran, Tehran, Iran

Abstract

Combustion of Mazut in power plant generates sulfur oxides (SOx) and nitrogen oxides

(NOx) that need to be controlled in accordance with the European standard. Most of the

pollutant removal methods are effective in removing only one contaminant but not both SOx

and NOx. In this work, a combined approach is studied to simultaneously control SOx and

NOx from combustion of Mazut fuel.

This combined approach is consisted of the Mazut Nano-Emulsion usage instead of regular

Mazut, as well as, wet flue gas desulfurization or FGD system installation. The wet FGD

system removes the SOx by 80.3% but has no influence on NOx. The water content equals to

by 10% of Mazut volume is used to synthesize the Mazut Nano-Emulsion at optimum

performance. The dimensions of fuel droplet are in nano scale (63.7 nm in width and 123 nm

in diameter). The Mazut Nano-Emulsion usage removes the NOx and SOx by 30.8% and

42.2%, respectively. The approach of Mazut Nano-Emulsion usage and wet flue gas

desulfurization leads to simultaneous reduction of SOx and NOx in accordance with the

European standard. Results show that the combined approach decreases the SOx and NOx

79.8% and 78.3%, respectively that satisfied the European standard.

Keywords: Power Plant, SOx, Nox, Mazut, Nano-Emulsion, Pollution

* Corresponding author: Shahriar Kouravand; Tel.: +982136040614; fax: +982136040614.

Download English Version:

https://daneshyari.com/en/article/8092697

Download Persian Version:

https://daneshyari.com/article/8092697

<u>Daneshyari.com</u>