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a b s t r a c t

The design of structures on or within a rock mass requires an estimation of the strength of the intact rock
blocks. These blocks can be many orders of magnitude greater in scale than the core samples typically
tested. Thus, including the scale effect into a failure criterion is required for a more realistic estimation of
rock strength with various scales. In this paper, a modified multiaxial failure criterion with scale effect
parameters was developed based on the model proposed by Christensen. The modification process was
carried out according to the proposed scale effect equations for different stress paths, such as uniaxial
compression, point loading, uniaxial tension and pure shearing. Furthermore, the scale dependency of
the proposed parameters for the modified failure criterion was assessed using the results from the
uniaxial compressive and point load tests. Finally, it was confirmed that one of the modified failure
criterion parameters is scale independent when the results from uniaxial compressive and point load
tests are included.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The scale effect is a significant characteristic in brittle and quasi-
brittle media such as rock. Many studies have explored the scale
effect with regards to the uniaxial compressive test in different rock
types.1–15 Some research has also investigated the scale effect for
different stress paths such as point load and tensile tests.16–26 On the
other hand, investigations into the mechanical behaviour of intact
rock has resulted in various failure criteria.27–33 Some criteria 31,32,34–

38 are extensions of those developed for soils, which scale effect has
not been incorporated. Perhaps the most widely used criterion is that
of Hoek and Brown,39 and scale effect has been incorporated into it
by assigning a scale dependence to the uniaxial compressive strength
term which appears in its definition. However, there was no clear
analytical justification for this approach to incorporate scale effect,
and its suitability to capture scale effect for rocks brought to failure in
paths other than uniaxial compression such as point loading, uniaxial
tension and pure shearing remains unverified.

An alternate multiaxial failure criterion that incorporates scale
effect is presented here. It is an extension of the simple two
parameter multiaxial failure criterion for brittle materials pro-
posed by Christensen1 which is modified to include scale effect.
With this modification the scale effect under different stress paths
such as uniaxial compression, point loading, uniaxial tension and

pure shearing can be suitably captured. Finally, a parametric study
is carried out in order to investigate the scale dependency of the
proposed parameters for the modified multiaxial failure criterion.

2. Background

The original criterion of Christensen,1 with no account of scale,
will be used as a basis in this study. It states that a material is not
at failure when
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where I1 and I2 are the first and second invariants of the stress
tensor and = ( ) −J I I/32 1

2
2 is the second invariant of the deviatoric

stress tensor, with tensile stresses being taken as positive. Writing
the stress tensor as:
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For uniaxial compression, where σc is the applied uniaxial
compressive strength, σ=I c

1 , =I 02 and σ= ( )J /3c
2

2 . It is clear from
the criterion that for a particular material, two parameters χ and κ
are required to characterize its strength. The parameter χ is a
dimensionless shape parameter and represents the ratio between
the characteristic uniaxial compressive and tensile strengths,
σcand σt respectively, through
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The parameter κ is a strength parameter giving the criterion,
the dimensions of stress and is defined as
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Uniaxial compressive and tensile tests would be sufficient to
evaluate χ and κ , although as will be demonstrated later, other
combinations of tests involving different stress paths would
suffice.

If χ = 0, then the material behavior at failure is of the von Mises
type as the criterion in Eq. (1) simplifies to κ<J2

2 and κ in-
dividually controls failure. When χ = 0, the criterion defines a
failure surface in the three-dimensional stress state as a right
circular cylinder, symmetrical about the hydrostatic axis with ra-
dius κ2 . If χ > 0 then Eq. (1) defines a failure surface in the three-
dimensional stress space that is a revolved paraboloid symmetric
about the hydrostatic axis. When χ → ∞ the material is unable to
sustain load of any kind and disintegration occurs. Christensen 1

suggested that κ is a measure of the strength of the material
having no micro structural damage and must be related to atomic
scale properties. Furthermore, Christensen1 suggested that χ re-
presents the effects of micro structural deviations from the ideal
sample with no micro damage. However, the attribution of micro
structural origins to κ and χ has not actually been supported by
targeted experimental investigations, although it is aimed in this
research to provide some support to Christensen’s ideas using the
data gathered below.

Goodman40 showed compressive and tensile strengths for a
range of rock types indicating that, if Eqs. (4) and (5) apply, χ+1
varies from about 10 to 170. It is therefore sensible to assume for
all rock types that χ > 9.

The challenge is to define κ and χ as functions of scale, as the
criterion in Eq. (1) would then become scale dependent. The rea-
son that only these two constants should be scale dependent is
that they describe the material characteristics while the other
parameters such as I1 and J2 are stress-dependent. For example in a
rock sample with the same material characteristics, I1 and J2 can
attain different values under various stress conditions.

3. Incorporating scale and Weibull statistics into strength
measurements

The Weibull 41 probability distribution function was proposed
to describe the survival probability of a block of volume V con-
tained within a larger volume of material Vr . Bazant et al. 42 de-
scribed the mathematical principles of the statistical model in a
simple and elegant way. According to Bazant et al.,42 in a chain, if
the failure probability of an element (link) is assumed P1 then the
chance of survival would be (1–P1) and therefore, in the case of
many connecting elements, the survival probability would be as
follows:
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where Pf is the failure probability of the chain. So,

( )( )− = − ( )N P Pln 1 ln 1 7f1

In practice, P1 has a very small value. This leads to ln(1�P1)
E�P1. Therefore,

( )− = − ( )P NPln 1 8f 1

Now, by setting N¼V/Vr, Eq. (6) becomes
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where V is the volume of the sample, Vr represents the volume of
one element in the sample, Pf (s) is the material strength, and P1(s)
is the strength of the representative sample. Equation (9) is the
initial statistical model proposed by Weibull 43; later, he in-
troduced a more general form of Eq. (9) through:
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where m is a material constant introduced for better simulation of
the size effect behaviour (m¼1 was assumed in Eq. (9)). In Eq. (10),
V and Vr can be substituted by any characteristic measure of vo-
lume such as length3 or sample diameter3. For example, in the case
of cylindrical samples with identical shape and constant length to
diameter ratio instead of volume the diameter can be substituted.

It will now be demonstrated that Eq. (10) can be applied to
strengths observed in rock when subjected to different stress
paths.

3.1. Scale effect in uniaxial compressive strength

Uniaxial compressive strength (UCS) of rock samples measured
in a laboratory is well-known to be scale dependent and obeys
Eq. (10) written in a slightly different form:
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where the measured UCS (σc) is a function of sample diameter d
(in millimeters) and σc

50 is the characteristic UCS measured of a
sample with a diameter of 50 mm. Hoek and Brown15 collected
UCS results from different rock types and suggested that the value
of k1 is 0.18 (see Fig. 1).

For a uniaxial compressive test:
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where κ50 and χ50 are material properties for 50 mm diameter
samples, and κ and χ are material properties for samples of dia-
meter d. An expression linking κ50, χ50, κ and χ to β1 (or d/50) is
then obtained by substituting Eq. (12) into Eq. (11):
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3.2. Scale effect in point load strength index

A scale effect is also observed in strength measured using point
load test (PLT). Franklin44 showed that the point load strength
index =I f d/s

2, where f is the force required to fail a sample of
characteristic diameter, according to:
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