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a b s t r a c t

This paper presents the fundamental solution for a two-dimensional displacement discontinuity method
(DDM) for transversely isotropic elastic materials. We follow the procedures shown in the literature, in
which there are some typographic errors and a lack of proper explanations for some expressions. Based
on the fundamental solution of deformation due to a single point force in transversely isotropic mate-
rials, the formulation for deformation from force dipoles has been revisited. Generalised Hooke's Law is
used to establish the relationship between dipole strengths and displacement discontinuities, which
leads to the fundamental formulation of DDM for transversely isotropic materials. We present the full
details of derivation and corrections to some expressions which have previously been presented with
errors. In addition, we present the fundamental solution expressions for DDM for one situation which
was not included in the literature. The fundamental solutions are implemented in an existing DDM code,
FRACOD, and the method is verified by some examples with an analytic solution and finite element
method. Furthermore an engineering application is simulated with the scheme.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rocks are often modelled as isotropic material. But in some
situations, such as for some sedimentary rocks,1 such models are
not accurate. Sedimentary rocks often contain numerous bedding
structures and exhibit strong mechanical anisotropic behaviour. In
simulations of sedimentary rocks, anisotropic properties should be
considered. Transverse isotropy is a special anisotropic material
property in which material possess an axis of symmetry of rotation
and the material has isotropic properties in a plane normal to that
axis.2 Five independent material parameters are needed to de-
scribe the general constitutive relations for transversely isotropic
material, and four parameters for in-plane deformations in the
plane containing the transverse direction. Therefore the four
parameters for plane deformations can be derived from the five of
the general constitutive relations.

The expressions for the general solution for displacements and

stresses in transversely isotropic elastic body in two-dimensional
problems have been obtained with Lekhnitskii,2 Stroh3 or other
methods; see Ref. 4. Lekhnitskii2 used stress functions and com-
patibility equations while Stroh3 sought a solution for the equili-
brium equations in terms of displacements. The solutions are ex-
pressed in complex variables. They depend on three pairs of
complex conjugate characteristic roots of a sixth order character-
istic equation for general plane problems which contain out-of-
plane shear, and two pairs for usual completely plane problems
without out-of-plane shear. The characteristic values are purely
dependent on material parameters. The general expressions have
been used for various problems, particularly the solution for dis-
placements and stresses in infinite body caused by a concentrated
force. This concentrated force solution can be used as the basis for
some other problems.

Displacement discontinuity method (DDM) for isotropic ma-
terials has been used successfully in many engineering simula-
tions, particularly for simulation of crack growth; see Crunch and
Starfield5 and Shen6 for two-dimensional cases and Shi et al.7 for
three-dimensional problems. But it has not been employed widely
for anisotropic materials. DDM, as a boundary element method
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(BEM) has an advantage over other domain discretisation methods
(such as the popular finite element method (FEM)) of formulating
problems with one dimension less than the problem's real di-
mensions. For crack propagation problems, it also has an ad-
vantage over some other BEMs by only discretising the cracks
themselves, not the two surfaces of the cracks. These reduce the
total number of equations to be solved. However, it requires the
analytic expression of fundamental solution, which is only avail-
able for some problems.

Kayupov et al.8 and Kimence and Erguven9 are among those
who formulate and use DDM for transversely isotropic materials,
and they follow a similar procedure. Kayupov et al.8 first used the
concentrated force solution to obtain solutions for displacements
and stresses caused by a force dipole and then used the relations
between force dipoles and strains to achieve the expressions of
solutions for displacements and stresses in two-dimensional ani-
sotropic material in terms of displacement discontinuities. The
source of these relations was not given. They are in fact the gen-
eralised Hooke's law since the force dipoles are related to stress
components. This forms the basis of DDM for anisotropic materials
in two-dimension with complex variables. However there are no
examples given in Ref. 8. Denda10 presented the fundamental so-
lution due to a dislocation dipole in an infinite body, which can
also be used for DDM.

Most recently, Bobet and Garcia Marin11 employed this for
completely plane problems of transversely isotropic materials.
However they believed that the complex characteristic roots for
this type of materials must be in pure imaginary form (discussed
in Bobet12) and obtained the corresponding expressions for dis-
placements and stresses in real variables. We believe that his ar-
gument in Ref. 12 for the pure imaginary characteristic roots is
inaccurate, given that he discussed only one of two possible cases
(see later discussion). While for some materials the complex
characteristic roots are indeed pure imaginary, there are materials
which produce full complex characteristic roots. In this paper, we
show the fundamental solution for DDM for transversely isotropic
materials which have full complex characteristic roots and im-
plement it in an existing fracture simulation code FRACOD.

Firstly in Section 2, we summarise Kayupov's8 procedure of
deriving the fundamental DDM solution for transversely isotropic
materials. He listed a number of equations without proper ex-
planations. We will show the sources and detailed derivation for
these equations. In Section 3 we will discuss the inaccuracy of
Bobet's12 conclusion about the form of the characteristic roots,
subsequently presenting (for purpose of completeness and cor-
recting some of the typographic errors in their expressions) the
expressions for DDM for the cases in which the characteristic roots
are purely imaginary. The fundamental DDM solutions for trans-
versely isotropic materials with the full complex conjugate char-
acteristic roots are given in Section 4. Brief description of DDM
equations and some examples for validation with analytic solution
and finite element method will be given in Section 5 before con-
clusion in Section 6.

2. Fundamental DDM solution for transversely isotropic
materials

We consider transversely isotropic materials whose isotropic
symmetry is orthogonal to the y-axis of a global coordinate system
i.e. the materials are isotropic in planes normal to the y-axis. We
assume that the deformation is under plane strain conditions in
planes parallel to xy coordinate plane i.e. ε = 0z . The constitutive
relations for strains and stresses under the plane strain condition
are expressed11,12 as follows:
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where the compliance coefficients β ( = )i j, 1, 2ij are related to
Young's moduli, Poisson's ratios and shear modulus in the material
symmetry directions according to
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The material properties are different in the x and y directions
and are isotropic in xz plane; Ex and Ey are the Young's moduli in
the x and y directions; Gxy is the shear modulus in the xy plane; νxz

is the isotropic Poisson's ratio in the xz plane; νyx is the Poisson's
ratio in the xy plane and represents the shrinkage in the x-direc-
tion caused by tension in the y-direction. It is noted that the
Poisson's ratio in the xy-plane representing the shrinkage in the y-
direction by tension in the x-direction νxy satisfies the relation

ν ν=E Ey xy x yx.
The solution for plane strain deformations of transversely iso-

tropic material can be obtained by using Lekhnitskii's2 or Stroh's3

methods for generalised or complete plane strain deformations8 of
general anisotropic materials. The generalised plane strain de-
formations are independent with one spatial coordinate but can
have shear strains in this coordinate direction. When the materials
are transversely isotropic, some of the material parameters of the
general anisotropic materials become zero. If deformation further
satisfies the standard plane strain conditions in xy-plane (no shear
strain components in the z-direction), then the displacements and
stresses can be expressed with two analytic complex functions.
The exact form of the two analytic complex functions depends on
the considered problems. For example, as shown later, the solution
of a single concentrated force has logarithmic form, while the
solution of force dipole is inversely proportional to the distance
from the centre of the force dipole to the point where the solution
is evaluated.

2.1. Deformation from a single concentrated force

The displacements and stresses at point (x,y) in an infinite
transversely isotropic body due to a concentrated force (fx, fy) at
point (x*,y*) are given by8.
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μ μand1 2 are two distinct roots (characteristic values) of the
characteristic equation
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