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1. Introduction

In the past decades, a number of analytical solutions were
developed to model solute or contaminant transport processes in a
single fracture–matrix system.1–4 The first and widely applied
analytical solution for solute transport in a simplified single frac-
ture located in a semi-infinite porous rock matrix was put forward
by Tang et al.,2 considering mechanisms of advection, dispersion,
matrix diffusion, sorption and decay processes. This analytical
solution has been widely used to model solute or contaminant
transport in fractured rocks at different scales, and employed to
interpret laboratory experiments and field tracer tests.5 It was also
widely adopted as the basic benchmark test tool for other specific
mass transport and heat transfer problems in the fractured porous
rocks.6–9

In Ref. 2, the fracture was assumed to be formed by a pair of
smooth parallel plates with a single-phase fluid flow of a constant
velocity along the fracture, and the rock matrix was assumed to be
a fully saturated porous medium of homogeneous porosity, with
zero fluid velocity, in a 2D space. The transport processes in the
fracture–matrix system were assumed to be governed by two
coupled one-dimensional equations: one for the transport along
the fracture and another for matrix diffusion in the direction
perpendicular to the fracture length, by averaging the mass flux
exchange at the fracture–matrix interface as a source term. In

order to derive the closed-form solutions of the equations, it was
found that the transverse diffusion across the fracture fluid,
longitudinal matrix diffusion in the direction along the fracture
axis, and the difference of concentration gradient at the interface
between fracture and matrix were ignored, by accepting three
special assumptions, which are described in Section 3.2.

The impact of these special assumptions on modeling solute
transport processes in rock fracture–matrix systems is an im-
portant issue, but has not previously been systematically eval-
uated. In practice, such impact may become important for mod-
eling solute transport processes in fractured porous rock masses,
for example, when using discrete fracture network models for
problems of large spatial and long temporal scales. Therefore, a
quantitative analysis for the impact of these special assumptions is
needed. Roubinet et al.4 discussed the impact of transverse dis-
persion in fracture and longitudinal diffusion in matrix through
semi-analytical solutions, and they found that the ratio of trans-
verse dispersion in fracture and transverse diffusion in matrix are
the key processes controlling the fracture–matrix exchange of
solute masses. In addition, they found that the longitudinal dif-
fusion in the matrix has impacts on the solute concentration in the
fracture with low Péclet (Pe) numbers. The impact of these special
assumptions, especially the assumption of constant concentration
gradient at the interface between fracture and matrix, has not
been checked against numerical modeling results. This issue mo-
tivated our research presented in this paper.

The aim of this study is to analyze and discuss the impacts of
the special assumptions for deriving the analytical solution in Ref.
2 through numerical modeling, thus, to better understand and
evaluate the uncertainties of modeling the solute transport
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processes in fractured rocks when analytical solutions are adopted
as the basic mathematical tools.

2. Single fracture–matrix system

As presented in Ref. 2 we consider a conservative solute
transport in a single fracture represented by a smooth parallel
plate fracture model with a constant aperture 2b, embedded in an
semi-infinite and homogenously porous rock matrix, as shown in
Fig. 1 as a conceptual model, where symbol Cm represents the
solute concentration in the pore water of rock matrix, Cf re-
presents solute concentration in fracture, u is the fluid velocity in
the direction along the fracture and b is the half-aperture of the
fracture, respectively.

Besides the simplified geometry of fracture–matrix system, the
basic physical and mathematical assumptions, as adopted in Ref. 2
are: (1) the physical problem was defined in a 2D space; (2) the
rock concerned is a homogenously porous rock with a small per-
meability, fully saturated but with zero fluid flow velocity; (3) the
fluid flow in the fracture was assumed as laminar; (4) no me-
chanical and thermal processes were considered. For simplicity,
only advection and dispersion in the fracture, and molecular dif-
fusion in the matrix, were considered in this study, since our ob-
jectives are checking the impacts of the three special assumptions
for deriving analytical solutions,2 not a complete spectrum of the
transport processes involved.

3. Governing equations and analytical solution

3.1. Solute transport equations

The solute transport processes in such a space of fracture–
matrix system = {( ) ≤ < ∞ − ∞ < < ∞}x z x z, : 0 , , as shown in
Fig. 1, can be expressed by a general transport equation without
source terms, written as

θ θ∂
∂

+ ∙∇ − ∇∙ (∇ )= ( )
C
t

u C D C 0 1

where ( ) ( ) ( ) ( )C kg m t s u m s D m s/ , , / , /3 2 and θ denote the volumetric
solute concentration in fluid phase, the time, the fluid velocity, the
dispersion coefficient and the rock matrix porosity, respectively.

For the fracture, the dispersion coefficient is given in Ref. 2 by

α= = + * ( )D D u D 2f L

where α ( )mL is the longitudinal dispersivity along the fracture in
the x-axis direction (Fig. 1), and *( )D m s/2 is the molecular diffusion
coefficient of solute in the fracture fluid (i.e. water). For the porous
rock matrix, as =u 0 was assumed, the dispersion coefficient is then
equal to the effective diffusion coefficient Dm, and it was defined as

related to the matrix tortuosity (τ), written as2

τ= = * ( )D D D 3m

Initially, no solute was assumed in the fracture–matrix system
( = =C t0 at 0). The boundary conditions are expressed as2

( = − ≤ ≤ ) = ( = < − < ) =C x b z b t C C x z b b z t0, , , 0, or , 0,0

( =∞ ) = ( = ± ∞ )= ( )C x z t C x z t, , 0, , , 0 4

3.2. Analytical solution by Tang et al.2

In order to analytically solve above transport equation in the
fracture–matrix system, the general transport equation (Eq. 1) for
the whole domain of the fracture–matrix systemwas often written
as two separate transport equations: one for the fracture

}Ω ={( ) ≤ < ∞ − < <x z x b z b, : 0 ,f and another for the matrix
Ω ={( ) ≤ < ∞ < < − }x z x b z z b, : 0 , andm . In Ref. 2, the two se-
parate transport equations were simplified as two one-dimen-
sional equations for solute transport in fracture and diffusion in
matrix, respectively, by adopting the following special assump-
tions: (1) transverse diffusion and dispersion within the fracture
assured full mixing across the fracture width (in the direction of
the z-axis in Fig. 1) at all times; (2) the gradient of solute con-
centration at the interface in the direction of the z-axis ( |∂ ( )

∂ =±
C x

z z b
m )

was constant; (3) the matrix diffusion in the direction along the
fracture length (in the direction of the x-axis in Fig. 1) was ignored.
Note that the second assumption was implicitly required during
the mathematical model setup process.

In order to demonstrate the mathematical model setup and
requirements of these assumptions in Ref. 2, an illustration of mass
conservation system in a differential control volume of the fracture
is presented in Fig. 2. Only the first order of the solute fluxes was
kept.

In Fig.2, ( )J xf represents the solute flux in the the x-direction. It

Fig. 1. Conceptual model of the fracture–matrix system geometry and boundary
conditions.

Fig. 2. Illustration of mass conservation in a differential control volume of fracture.

Fig. 3. Illustration of control volumes.
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