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a b s t r a c t

This paper presents a heuristic algorithm, which schedules the operation of electric water heaters
(EWHs) under dynamic electricity pricing. The algorithm takes into account cost and comfort prefer-
ences/constraints as well as energy pricing and hot water consumption and minimizes the energy cost
without significant compromise of the perceived comfort level, operating either in a cost- or comfort-
oriented mode. Its performance was evaluated through simulation assuming a day-ahead real-time
pricing (DA-RTP) tariff and a time-varying bound on power consumption, taking into account the user's
daily hot water consumption rate. A comparison between the proposed heuristic algorithm and an
optimal scheduling algorithm showed identical performance, in terms of energy cost reduction. Also, a
parametric analysis studied the effect of several critical parameters (maximum water tank temperature,
EWH's rated power and capacity) on the performance of the scheduling algorithm. A significant feature
of the proposed algorithm is its low computational complexity, which extends its applicability to low-
cost embedded controllers.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Buildings are responsible for more than 40 percent of global
energy use and one third of global greenhouse gas emissions, both
in developed and developing countries (UNEP, 2009). Growing ef-
forts to supply affordable, reliable, secure and clean electric power
are based at most on energy efficiency. While energy efficiency is
the most prominent component of these efforts, Independent
System Operators (ISOs) use demand response (DR) as a basic tool
towards reduction of both total energy consumption and peak
demand (Goldman et al., 2010). By applying DR, customers' elec-
tricity consumption is constrained at critical time periods or in
periods of high whole market prices. Existing DR measures include
time-based rates and incentive based programmes. DR plays an
important role in the smart grid technologies that manage elec-
tricity demand in response to supply conditions. (U.S. Department
of Energy, 2006). On the other hand, by making the demand side
more sensitive to price signals, part of the generation adequacy
challenge could be solved (Aghaei and Alizadeh, 2013). In energy
systems mainly relying on photovoltaic and wind power, DR may

furthermore contribute to system stability and increase the
renewable energy share, playing a role of growing importance in
the future electricity system, mainly due to benefits regarding
economic efficiency, system reliability and environmental benefits
(Gils, 2014).

Considerable research work aiming at reducing energy cost of
residential electric appliances under price-based DR schemes via
suitable controlling of their operation schedule has been already
conducted. Among various domestic electric appliances, EWHs
have certain characteristics, such as high nominal rated power and
significant thermal storage capacity, which make them ideal can-
didates for implementing operation scheduling control. In certain
areas, EWHs can consume up to 30% of household load and
contribute significantly to the peak load (Diao et al., 2012). The
already proposed strategies for controlling electric power demand
of EWHs' load can be divided in two categories: a) Utility-centered
strategies, applied by electricity providers, which aim at reducing
peak-load of aggregate EWH load in order to provide balancing/
regulation services, using techniques for water temperature
adjustment (Diao et al., 2012), voltage control (Nehrir et al., 2007)
or ON/OFF control (Diduch et al., 2012; Ericson, 2009; Kondoh et al.,
2011) and b) customer-centered strategies, which aim at reducing
the household's energy bill in response to dynamic price signals* Corresponding author.
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(implicit or price-based DR), by shifting their demands automati-
cally to the off-peak hours. The presented paper belongs to the
second category (customer-centered) and thus a brief presentation
of relevant papers is necessary.

Lu and Katipamula (2005) have presented certain strategies for
set point control of EWH loads aiming at shifting power con-
sumption from the high-price to the low-price period in order to
reduce both peak-load and electricity cost, while keeping tank
water temperature above a minimum acceptable level.

Goh and Apt (2004) developed three different strategies which
aim at achieving maximum cost energy savings for the consumer
when dynamic pricing is applied. The most effective of these stra-
tegies is changing the set-point temperature between a minimum
and a maximum value, according to electricity price. Nevertheless,
this strategy does not take into account the comfort aspect and thus
it does not always guarantee an acceptable tank water temperature.
Specifically, there is not a rule for setting the minimum and
maximum set point temperatures. Thus, if maximum set point
temperature has been set to a low value, there is possibility of
unacceptable (low) hot water temperature during periods of high
water consumption and high electricity prices.

Sepulveda et al. (2010) proposed a binary particle swarm opti-
mization algorithm in order to calculate the optimal load demand
schedule for minimizing the peak load demand while maximizing
the water heater temperature. These two conflicting objectives
were mapped to a fitness function, by using weight factors for the
aggregated load and the water temperature. The trade-off between
the load demand and the temperature of the water was adjusted by
setting the values of the weight factors.

Du and Lu (2011) proposed an appliance commitment algo-
rithm, which schedules thermostatically controlled appliances
(TCAs), such as EWHs, in such a manner that electricity bill is

minimized, taking into consideration constraints set by comfort
requirements.

Zimmerman et al. (2011) introduced a linear programming (LP)
model in which a client-side agent implements strategies aimed at
cost optimization under a real-time pricing scheme. In order to
define user's comfort, a range of acceptable water temperature is
proposed. However, the results lack a high degree of accuracy, due
to some simplifications that are applied, i.e. constant standby heat
loss.

Kepplinger et al. (2015) studied the potential of applying de-
mand side management to electric water heaters. The goal was to
minimize electricity cost while keeping tank water temperature
above a predefinedminimum temperature in time periods with hot
water demand. The optimization problem was formulated as a bi-
nary integer program and the subsequent presented optimal
strategy was based on both the expected demand and a piecewise
constant energy cost function.

Shah et al. (2016) approached the problem by using a greedy
algorithm, aiming at to reduce electricity costs of EWHs, consid-
ering a TOU pricing scheme, while it used thermal storage in order
to adapt to possible variation of hot water usage profiles. Con-
cerning the comfort aspect, the algorithm strived to keep tank
water temperature within an acceptable range. However, the al-
gorithm uses a rather complicated process to tune an optimization
factor, which is used for the calculation of the standby loss.

Passenberg et al. (2016) developed a stochastic Dynamic Pro-
gramming (DP) algorithm that optimized the heating schedules of
electric water heaters using forecasted consumption and weather
data, in order to reduce the energy cost while maintaining the
water tank temperature between a minimum and a maximum
value. The algorithmwas taking into account possible uncertainties
about the prediction of hot water consumption and thus, it

Nomenclature

A Surface area of the water heater [m2]
C Specific heat capacity of water [4184 J/ðkg$KÞ]
fp1;…; png Electricity tariff profile [cents/kWh]
costi Energy cost at time slot i [cents]
costmax Maximum energy cost [cents]
costmin Minimum energy cost [cents]
costperc Percentage cost difference between the tolerable and

the minimum energy cost [%]
discomforti Comfort cost (discomfort) at time slot i ½+C$kg�
discomfortmax Maximum discomfort ½+C$kg�
discomfortmin Minimum discomfort ½+C$kg�
Ji Objective function at time slot i
Jmin Minimum value of the objective functionn
Mbath

1 ;…;Mbath
n

o
Bath water usage profile for all (1 to n) time
slots [kg/s]

M Mass of tank water [kg]
Minlet

i Mass of water from cold water inlet at time slot i [kg]
Mbath

i Mass of bath water at time slot i [kg]
Mbath

max Maximum mass of bath water [kg]
Pboundi Bound on power consumption at time slot i [W]
Pcriticali Total power demand of critical loads at time slot i [W]
Q Rated power of the water heater [W]
si Operation indicator (0¼OFF, 1¼ON) at time slot i
S* ¼ fs*i ;…;s*ng Set of optimal operation indicators for all (1 to n)

time slots

slotsacc Maximum tolerable number of time slots with water
temperature below Tpref

step Step for the increase of ldiscomfort at each iteration
t Time [sec]
T Tank water temperature [�C]
Tamb Ambient temperature [�C]
Tinlet Temperature of inlet water [�C]
Tmax Maximum water temperature [�C]
Tmin Minimum water temperature [�C]
T*
min Modified minimum water temperature [�C]

Tpref Preferred water temperature [�C]
T0
i Tank water temperature at the beginning of time slot

i [�C]
Th
i Tank water temperature at the end of time slot i,

before water draw [�C]
Tw
i Tank water temperature at the end of time slot i after

water draw [�C]
U Standby heat loss coefficient [W/(m2$K)]
wcost

i Normalized energy cost at time slot i

wdiscomfort
i Normalized discomfort at time slot i

wdiscomfort
average;j;k Average normalized discomfort from j to k slot

Dt Time slot duration [sec]
lcost Weighting factor of energy cost
ldiscomfort Weighting factor of discomfort
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