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a b s t r a c t

The paper presents a numerical wellbore stability model using the finite element method (FEM). The core
driver of the model uses Biot's theory of poroelasticity. The model uses a time-dependent analysis that
accounts for the poroelastic effects of pore pressure and deviatoric stress, which are not accounted for in
the common static linear elasticity analyses. The use of pseudo-3D FEM based on the theory of gen-
eralized plane strain, allows the freedom to analyze complex geometries such as inclined boreholes in
anisotropic formation under three dimensional stress field. Shear failure prediction is demonstrated
using isotropic and anisotropic failure criteria. Available analytical solutions in literature for anisotropic
poroelasticity assume transversely isotropic material with the plane of isotropy always perpendicular to
the borehole axis. The presented numerical model removes the above assumption and accounts for the
mechanical anisotropy and formation dipping effects that are difficult to deal with using an analytical-
based analysis. Finally, juxtaposition between isotropic and anisotropic analyses shows significantly
dissimilar failure prediction and mud weight recommendations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of consolidation of saturated porous media was
originally developed by Biot1 and widely referred to nowadays as
the theory of poroelasticity. It describes the rock behavior under
three-dimensional stress field coupled with the hydraulic effect
due to the presence of saturating fluid inside the pores. Using
Biot's theory, Detournay and Cheng2 developed an analytical so-
lution for vertical boreholes in isotropic formations under internal
and external two-dimensional stress field with the plane strain
assumption. This time-dependent solution has been widely used
in the oil and gas industry to analyze borehole stability problems
that can be detrimental to drilling operations. Cui and
Abousleiman3 extended Detournay and Cheng's work to include
inclined boreholes in isotropic formations under three-dimen-
sional stress field using the generalized plane strain theory de-
veloped by Amadei and Leknitskii.4,5

Rather than assuming an isotropic formation, Abousleiman and
Cui6 incorporated a special case of material anisotropy into the
formulation known as transverse isotropy (TI) that is common in
shale formations, where the material properties vary only in two
orthogonal planes. Due to its laminated nature, shale formations
are highly anisotropic. Assuming isotropic rock models will result
in erroneous predictions of wellbore shear and tensile failures.

However, they assume that the plane of isotropy of the TI material
is always perpendicular to the borehole axis. This substantial as-
sumption is made for mathematical convenience. Otherwise, the
solution formulae would be lengthy and cumbersome. Though
convenient, this assumption excludes the majority of the cases
encountered, especially in inclined wellbores. Using numerical
models to solve such complex geometries is usually
recommended.

Using static wellbore stability models based on linear elasticity
are not sufficient, as they do not consider the dynamic nature of
the hydraulic effect of fluid flow and its effect on effective stresses.
A time-dependent solution is needed using the theory of por-
oelasticity to monitor the integrity of the wellbore over time
during and after drilling.

The topic of wellbore stability has been extensively discussed in
literature. Gholami et al.7 discuss the application of different fail-
ure criteria in the estimation of optimum mud window for drilling
a safe borehole. They demonstrated the use of a well logs in es-
timation the mechanical properties and in-situ stresses. This work
falls short as the analysis only discusses vertical boreholes drilled
in isotropic formation, and no failure along weak bedding plane.
The majority of subsurface rocks exhibit TI behavior.8 Tien and
Kuo9 discuss the failure of TI rocks is governed by failure of the
rock matrix and sliding along the discontinuity of weak bedding
planes. Matrix failure coupled with slip failure effect on optimum
drilling mud weight for inclined boreholes is discussed in
literature,10,11 but isotropic stress models are used and no time-
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dependent analysis is discussed. Observed anisotropic shear failure
around the borehole caused by matrix and slip failures and their
effect on estimating in-situ stresses is analyzed by Lee et al.12

However, the authors do not consider anisotropy in mechanical
properties, and a homogenous isotropic rock is assumed through-
out. Yan et al.13 address this shortcoming by analyzing borehole
stability using an anisotropic linear elasticity model while ac-
counting for rock strength anisotropy, but fall short to account for
the time-dependent poroelastic effect. The time-dependent effects
of thermal and chemical gradients on wellbore stability is out of the
scope of this work, and has been addressed by several authors,14–16

This work describes the development of a numerical model for
fully coupled anisotropic poroelastic model that can provide a solution
for the transient state of pore pressure and effective stress. While
accounting for the mechanical anisotropy, time-dependent analysis of
matrix and slip failures is discussed. Finally, estimation of borehole
collapse and fracture initiation pressures are analyzed for different
borehole inclinations using isotropic and anisotropic models.

2. Poroelastic model

The classical plane strain assumption is a two dimensional (2D)
approach, where the strain normal to the x–y plane, zϵ , and the anti-
plane shear strains, xzγ and yzγ , vanish to zero. This assumption is a
valid one only when the following conditions are met: (a) The
borehole axis is parallel to the principal stress direction, where the
z-component far-field stresses, xzτ and yzτ , vanish to zero, and the
problem becomes a two dimensional one and (b) the material has a
maximum of one plane of elastic symmetry that is perpendicular to
the hole axis. This indicates that the state of stress at any point can
be specified by xσ , yσ and xyτ only. In practical terms, the assumption
limits the analysis to: vertical or horizontal wells in isotropic for-
mations, and vertical wells in transversely isotropic formations,
where the plane bedding is orthogonal to the hole axis.

Due to the limitations of the classical plane strain assumption,
the generalized plane strain (GPS) assumption developed by
Amadei and Leknitskii4,5 is used throughout this paper. The GPS
assumption deconstructs the problem into three parts: I. Plane
strain problem that involves xσ , yσ , zσ , xyτ and pore pressure, II.
Uniaxial-strain problem that involves zσ only and III. Anti-plane
shear problem that involves xzτ and yzτ . Problem I can be separated
into three different loading modes: 1. The effect of the mean iso-
tropic stress, 2. The poroelastic effect of pore pressure and 3. The
poroelastic effect of deviatoric stress. A detailed analytical solution
for isotropic poroelasticity using the GPS assumption is developed
by Abousleiman and Cui.6

2.1. Governing equations

The constitutive equations for isothermal poroelasticity are
governed by the stress–strain relation and the variation of fluid
content per unit referential volume (ζ). They are given by6:

D p 1ij ijkl kl ijσ α= ϵ − ( )

M
p
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where σ and ϵ are the total stress and strain vectors, D is the
drained elastic stiffness tensor, α Biot's effective stress coefficient
vector, M is Biot's modulus and p is the pore pressure. A repeated
subscript refers to the Einstein summation. The strain can be re-
lated to the solid displacement (u) as follows:
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where a comma followed by a subscript marks the spatial differ-
entiation. Fluid diffusion is governed by Darcy's law as follows:
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where Jf is the fluid flux, fρ ̅ is the average fluid density, κ is the
mobility tensor, k is the rock permeability tensor and μ is the fluid
viscosity. An isotropic permeability tensor is assumed throughout
the paper, but the numerical formulation allows for the use of an
anisotropic tensor. The conservation laws enforced on the model
ignore all body forces such as gravity, and inertial forces. The
mechanical equilibrium equation is given by:

0 6ij j,σ = ( )

The microscopic mass balance for the system, assuming no loss
of mass from the solid phase, is given by:
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The presented constitutive and transport equations are sub-
stituted into the conservation laws to yield the final field equa-
tions. The Navier-type equation for displacement in the x–y plane
using the generalized plane strain assumption is obtained by in-
voking Eq. (1) into the equilibrium equation:

⎡⎣ ⎤⎦D D u D D u p
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Similarly, Eq. (2) is substituted into the mass balance equation
to yield the local continuity equation:

u
M

p p
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0 9
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where the overdot denotes the time derivative.

3. Material anisotropy

For generality, this section assumes orthorhombic (orthotropic)
material, where the material properties change in all three prin-
cipal directions. The stress–strain relationship is given by the
generalized Hooke's law using the engineering notation for strain:

⎡⎣ ⎤⎦D 10x y z xy yz xz T x y z xy yz xz
T[ ]σ σ σ τ τ τ γ γ γ= ϵ ϵ ϵ ( )

The drained elastic stiffness tensor, which is equivalent to the
inverse of the compliance tensor, C , is given in the intrinsic rock
properties coordinates4,5:
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In the above relation, Ei, vij and Gij (i, j x= , y and z are the
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