International Journal of Rock Mechanics & Mining Sciences 76 (2015) 44-54

Contents lists available at ScienceDirect

International Journal of
Rock Mechanics
and

Mining Sciences

International Journal of

Rock Mechanics & Mining Sciences RAN

journal homepage: www.elsevier.com/locate/ijrmms

Boundary element analysis of non-planar three-dimensional

@ CrossMark

cracks using complex variables

Dmitry V. Nikolskiy

, Sofia G. Mogilevskaya, Joseph F. Labuz

Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA

ARTICLE INFO

Article history:

Received 20 October 2014
Received in revised form

28 January 2015

Accepted 16 February 2015
Available online 17 March 2015

Keywords:
Three-dimensional fractures
Boundary element method
Computer simulations

ABSTRACT

This paper reports new developments on the complex variables boundary element approach for solving
three-dimensional problems of cracks in elastic media. These developments include implementation of
higher order polynomial approximations for the boundary displacement discontinuities and more
efficient analytical techniques for evaluation of integrals. The approach employs planar triangular
boundary elements and is based on the integral representations written in a local coordinate system of
an element. In-plane components of the fields involved in the representations are separated and
arranged in certain complex combinations. The Cauchy-Pompeiu formula is used to reduce the integrals
over the element to those over its contour and evaluate the latter integrals analytically. The system of
linear algebraic equations to find the unknown boundary displacement discontinuities is set up via
collocation. Several illustrative numerical examples involving a single (penny-shaped) crack and

multiple (semi-cylindrical) cracks are presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the mechanisms of initiation and propagation of
fractures in rock is of key importance to the mining and petroleum
industries. The boundary element method (BEM) is an attractive tool
for geomechanical applications as it is capable of efficient treatment of
problems featuring large domains containing fractures (described as
surfaces of discontinuous displacements) of arbitrary shapes [1,2]. In
hydraulic fracturing simulations, the boundary equation for the crack
is a fundamental part of a fully coupled model that involves fluid flow
[3]. Therefore, accurate and efficient three-dimensional simulators of
the fields around multiple non-planar cracks are in great demand.

In our previous publication [4], it was suggested to utilize complex
variables for numerical solution of three-dimensional crack problems.
While some applications of complex variables in three-dimensional
elasticity theory have been reported (e.g., [5-8]), these publications
dealt with the solution of a narrow class of theoretical problems that
did not involve numerical simulations. However, in [4] it was shown
that complex variables possess some attractive numerical features in
simplification of analytical integration and reduction in the number
of integral terms, as compared to real variables-based approaches.
In the present paper, we extend the complex variables BEM of [4]
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to incorporate higher order approximations of the displacement
discontinuities.

The present complex variables approach is displacement disconti-
nuity (DD)-based in its broader sense (see the literature review in
[4,9]), as it involves integral representation for tractions in terms of
displacement discontinuities on crack surfaces. As in [4], planar
triangular elements are employed and in-plane components of trac-
tions, displacement discontinuities, as well as geometric parame-
ters are arranged in various complex combinations. The entries
of the matrix of the system of linear algebraic equations, set up via
collocation, are calculated analytically by performing analytical inte-
gration over the element. However, instead of using simple piecewise
constant approximations of the unknowns, as in [4], here we employ
polynomials up to second order. In addition, instead of using an
iterative integration procedure, which does not fully utilize the adv-
antages of complex variables, we use the integration technique
reported in [10]. The technique is based on representations for
complex functions that reduce the integrals over the area of the
element to those over its contour. We show that all entries of
the influence matrix can be composed of various combinations of
one generic integral, its derivatives, and their complex conjugates. The
same integrals and combinations are involved in the representations
of the elastic fields everywhere in the computational domain. The
analytical expression for the generic integral over a triangular element
is provided.

The goal of the present paper is to study the influence of higher
order approximations on the accuracy of evaluation of the fields.
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While we do not introduce special crack tip shape functions for DD (as
we are aiming at the applications, e.g. hydraulic fracturing, that do not
necessarily exhibit square root asymptotic behavior), we show that
higher order approximations still allow for capturing stress asymptotic
behavior near the tips of dry cracks. The approach is tested on several
examples, namely (i) the problem of a penny shaped crack under
normal and shear far-field load, and (ii) the problem of two semi-
cylindrical coaxial cracks under biaxial far-field load. Some of the
results are tabulated to serve as benchmarks for future investigations.

2. Problem formulation and basic equations

We are concerned with the BEM solution of the problem of the
stress state in an infinite elastic domain containing non-planar cracks
of arbitrary shapes and subjected to far-field stresses (zero body force
is assumed). The sign convention is that positive tensile stress.

BEM employs integral representations, which are equivalent to the
governing partial differential equations of a specific problem, but
expresses the solution of that problem in terms of integrals over the
boundary of the domain of interest. The representation for the
tractions t(x) at some point X located outside of the crack surfaces
on the plane characterized by normal vector n(x) has the following
form:

Lj(x) = — /):ij(x, EAu€) dZ; M

where X is the totality of cracks' surfaces, & e X, Auy, are the com-
ponents of the displacement discontinuity (DD) Au=u* —u—, in
which u(x) is the displacement vector with the components
(k=1...3),“+” and “—" identify the displacements on the opposite
sides of the crack, t; are the components of the traction vector. The
direction of the normal for the crack may be chosen arbitrarily. In the
notations used, this direction indicates the outward normal for the
“4" side (inward normal for the “—" side) of the crack.

Another notation adopted in Eq. (1) is related to the tensor H
that represents the kernel of the hypersingular potential asso-
ciated with Kelvin's fundamental solution [9,11-13]. Its compo-
nents Hj(x,€) are given by the following expression:
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where Jj is Kronecker's symbol, 1y =x,—&, r=[x—&|, ni(x) are
the components of n(x), n,(€) are the components of the outward
unit normal vector n(€) at the point , y is the shear modulus, and
v is Poisson's ratio.

The case of x e X is handled as the limiting case in which the
point x is allowed to reach the crack surface. Note that for the limit
of the integral in Eq. (1) to exist, certain smoothness conditions are
required for the boundary and the approximating functions for Au
(AuE) e C* [2,13]).

We assume that the tractions on X are prescribed. In case of far-
field load, a standard superposition procedure is adopted, in which
the problem is decomposed into two problems: one of an infinite
domain (without cracks) under the far-field load and another one of
an infinite domain containing the crack loaded by the prescribed
corrective tractions and zero far-field stress. To find the approximate
solution of the problem, the boundary is discretized, approximating
(shape) functions for the unknowns are introduced, the integrals

associated with each degree of freedom (and the corresponding
shape function) are evaluated, and the system of linear algebraic
equations is set by using the limit to the boundary and matching the
prescribed boundary data (the standard steps of the BEM procedure).
After the solution of the system of algebraic equations is found, the
stresses inside the domain £2 can be reconstructed using the super-
position of the prescribed far-field stress with the stresses given by
the following discretized analog of Eq. (1) with appropriately chosen
normal vectors n(x):
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The integrals involved in (3) are regular integrals and evaluated using
the same procedures as the ones used to assemble the matrix of the
system of algebraic equations (influence matrix).

The displacements at the point X inside the domain of interest can
be obtained (up to a rigid body movement) from the discretized
analog of the following equation:

Ne
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where the components Tj, of the tensor T that represents the kernel of
the double layer potential are given in [4]. It should be noted that the
formulation presented can be extended to the case of a finite domain
containing cracks by including in Egs. (1), (3) and (4) the correspond-
ing integrals over the boundary of the finite domain (see [4]).

3. Assumptions and complex notations for the fields and
geometry

As noted, in the present work planar triangular elements are used
to discretize the cracks surfaces. The unknown displacement disconti-
nuities on each element E are approximated by the linear combina-
tion of quadratic Lagrange polynomials associated with nodal points (6
per element). The positions of these points may vary; in the present
paper two arrangements are studied: (a) nodes located on the contour
of the element (including vertices) and (b) nodes located inside the
element. The case (a) provides continuity of DDs across the edges,
which the case (b) does not. Note that the collocation points can only
be located inside the element due to the smoothness conditions
required for the boundary and the approximating functions.

The local Cartesian coordinate system is introduced on the
element E; as in [4]: €,€,€5 is the right-handed orthonormal basis
where €, is parallel to the edge between two vertices of the
element, €3 = —n(&), and e, = €3 x €;. The origin of this coordi-
nate system may be chosen arbitrarily. From now on, components
of vectors and tensors are given in the local coordinate system of E
(see Fig. 1).

The following combinations associated with the vector r that
connects the point €eE; and the field point X = (x1,x3,X3) are
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Fig. 1. Boundary element. Local coordinate system and notations.
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