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a b s t r a c t

The strength and dilation of rock joints in the field cannot be evaluated solely on the basis of parameters
scaled from laboratory data, but also requires assessment of large-scale irregularities not present in the
laboratory sample. A constitutive model for rock joints has been developed that considers the dilation
and strength along both small-scale joint roughness scaled from laboratory data, and large-scale
waviness determined from geologic observations. The model’s performance is illustrated by providing its
correlation with experimental results taken from literature. The degradation in dilation and post-peak
strength along small-scale irregularities is modeled using the plastic work done in shear, and the
degradation along large-scale irregularities is modeled using a sinusoidal function. A dimensionless
product of plastic work, rock strength, and wavelength of irregularities has been developed which fits
the direct shear test results. An approach to scaling shear strength and shear displacement from
laboratory to field-scale is also suggested.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of rock joints dominates the behavior of rock masses
by providing planes of weakness along which shear and dilation can
occur. A number of experimental studies have been conducted to
understand the behavior of rock joints and many joint constitutive
models have been proposed to predict their mechanical behavior.
Patton’s model [1], one of the earliest and most fundamental models
for peak shear strength, was developed from the basic mechanics of
sliding up the asperity with inclination angle or shearing through the
asperity depending on the normal stress level. Later, Ladanyi and
Archambault [2] proposed a semi empirical model which featured the
curved failure envelopes. Barton [3] developed a useful empirical
model by introducing a morphological parameter known as the joint
roughness coefficient (JRC) and using the concept of roughness
mobilization. A significant advanced theoretical model was developed
by Plesha [4], in which asperity degradation is a function of the plastic
work during shear. More recently, approaches such as fractal [5] and
geostatistical analysis [6,7] have been proposed to evaluate the
mechanical behavior of rock joints under shear.

A large body of literature (e.g., [1,8–17]) indicates that strength
and shear behavior of rock joints vary both qualitatively and

quantitatively as a result of a change in sample- or in situ block-
size. Ignoring scale effect may lead to overestimation or under-
estimation of field shear strength of joints if the peak strength
obtained from laboratory joint shear test is used. Shear behavior of
rock joints in the field should be evaluated by considering the
dilation and strength along both small-scale joint roughness
scaled from laboratory data, and large-scale waviness determined
from geologic observations. However, most rock joint constitutive
models proposed in literature have been developed on the basis of
data obtained from laboratory tests on natural or model rock
joints. Thus, they do not fully represent the behavior of rock joints
in the field. This paper describes a rock joint constitutive model
which can generate shear stress–displacement–dilation curves for
both small-scale and large-scale joints. The model is incorporated
in 3DEC [18] using the built-in programming language, FISH and is
correlated with experimental results of direct shear tests taken
from literature.

2. Description of a constitutive model for small-scale joints

2.1. Mobilized shear strength

The shear stress–displacement–dilation curves generated by
the proposed joint model can be characteristically divided into five
stages: (1) elastic region, (2) pre-peak softening, (3) mobilized
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peak strength, (4) post-peak softening, and (5) residual strength.
Schematic curves in Fig. 1 shows there are five stages in the shear
stress–displacement–dilation curves. It is frequently observed
from experimental results of direct shear tests in the literature
that the shear stress–displacement curves show almost linear
elastic behavior to a stress approximately equivalent to the
residual strength of the joint. The proposed joint model accounts
for these observations. Therefore, during elastic region, the shear
stress is mobilized as a function of joint shear stiffness (Ks) and
elastic shear displacement (δse). The shear stress increment (Δτe) is
calculated as

Δτe ¼ KsΔδes ð1Þ
After the elastic region, the joint starts to slide and dilation

takes place, which means the plastic shear displacement occurs
from this point on. The degradation in asperity and also dilation is
modeled as a function of the plastic work done in shear. This is
discussed in detail in the following sections.

Most rock joints show that peak shear strength is mobilized at
very small deformation. A peak shear displacement is sometimes
considered to be a material constant, not affected significantly by
changes of normal stresses, which is supported by experimental
results such as Leichnitz [20] and Herdocia [21]. On the other
hand, as shown in some direct shear test results, such as Jaeger
[22], Schneider [23], and Flamand et al. [19], this parameter is not
always constant for a given joint. On the basis of results from shear
tests on model tension fractures, Barton and Choubey [8] sug-
gested that a peak shear displacement is dependent on sample
scale and occurs after a shear displacement equal to 1% of the joint
sample length up to some limiting size. Later, Barton [3] assumed

that elastic shear displacement (δse) is 0.3 times peak shear
displacement (δpeak). By performing direct shear tests on different
sized replicas casts from various natural joint surfaces, Bandis et al.
[10] concluded that for practical purposes a peak shear displace-
ment (δpeak) can be taken as approximately equal to 1% of the joint
length for a large range of block sizes and types of roughness.
Since no general relationship for peak shear displacement (δpeak)
is yet available, as the preceding discussion indicates, a peak shear
displacement (δpeak) is treated as an input parameter in the
proposed joint model, as ‘n’ times of elastic shear displacement
(δse), where δse is determined by the combination of stress level and
joint shear stiffness (Ks). For the initial analysis or with limited test
data available, the value of ‘n’ can be selected to be 3, based on
direct shear test results frequently observed in the literature
[3,24].

After peak shear strength, a mobilized shear stress is gradually
decreased until it reaches a residual value. The mobilized shear
stress during plastic region is calculated as

τmob ¼ σn tan ðϕrþαmobÞ ð2Þ
where σn is a normal stress, τmob is a mobilized shear stress, ϕr is a
residual friction angle, and αmob is a mobilized asperity angle that
degrades as plastic work increases.

2.2. Asperity degradation

The model proposed here simulates the progressive degrada-
tion of a joint asperity under shear. It is modeled by assuming that
degradation is a function of the plastic work, Wp and its relation-
ship is given by Eq. (3), which was suggested by Plesha [4].

αmob ¼ α0exp �cWp
� � ð3Þ

where α0 is an initial asperity angle, c is a asperity degradation
constant, and Wp is expressed as Wp ¼

PΔδps τ.
Although Eq. (3) possessed good qualitative and quantitative

agreements with experimental observations, it is difficult to relate
the asperity degradation constant, c to other properties of rock
joints [4]. From the cyclic shear test results on some thirty real
rock granite and limestone joints, Hutson and Dowding [25]
proposed an advanced relationship for the asperity degradation
constant, c given by

c¼ �0:141 α0N=σc cm2=J
� � ð4Þ

where α0 is an initial asperity angle, N is a normal stress, and σc is
an unconfined compressive strength of rock. This relation indi-
cates that asperity degradation is a function of material strength as
well as stress level, which has been mentioned by many research-
ers [2,8,13].

While the asperity degradation constant, c, in Eq. (4) describes
general behavior of a rock joint, it still has some questions to be
considered. First, it is not a dimensionless relation. The constant c
has a unit of [cm2/J] with a dimensional constant of 0.141. Thus
Eq. (4) is valid in only one consistent system of units. Second,
Eq. (4) is valid for limited range of scale of irregularities. The
Hutson–Dowding model was determined from tests on rock joints
having wavelengths of 3.2 and 5.0 cm, and is not expected to apply
to the typical laboratory samples. Hutson mentioned in his thesis
[26] that large laboratory models, such as the largest used by
Bandis [9], should produce similar results. Finally, the effect of the
applied normal stress in Eq. (4) is duplicated since this constant is
multiplied by the plastic work, Wp as shown in Eq. (3).

In order for the asperity degradation constant to apply to any
scaled laboratory samples, Eq. (4) appears to be modified. A
geometric parameter, that is, a wavelength is introduced and thus
the wavelength, λ with the initial asperity angle, α0 describes the
joint shape of typical laboratory samples. By removing the normal

Fig. 1. Schematic shear stress–displacement–dilation curves from the joint model.
Curves of simulation results using the same material properties as used in [19] in
the direct shear tests as illustrated in Fig. 6. Superscript e and p indicate elastic and
plastic, respectively.

Fig. 2. Schematic shear stress–displacement curves. Bold one represents shear
stress–displacement curve for joint in the field.
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