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a b s t r a c t

Advanced lithium-ion battery systems, in multi-cell configurations and larger-scale operations, are being
currently developed for energy storage applications. Furthermore, the retired batteries are being
increasingly second utilized in energy storage scenes. Thus, realistic and accurate battery state of health
diagnosis and related aging mechanisms identification is desired to improve the battery management
and control, and eventually guarantee the reliability and safety of the battery system. A half-cell model
based battery state of health diagnostic method is proposed to investigate the aging mechanisms and
possible attribute to the capacity fade in a quantitative manner. Using particle swarm optimization al-
gorithm, the half-cell model is parameterized to quantify the battery degradation mechanisms derived
from the parameter variations, which describe the electrode behavior with proper matching ratio and
their evolutions at different battery aging levels. The reliability and robustness of the approach has been
verified and evaluated by the database of the cells experienced different aging paths. Our approach is a
data-model fusion method to offer the benefits of wide applicability to various cell chemistries and
operating modes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Battery systems are currently being designed in multi-cell
configuration to fulfil the total voltage and power needs in
diverse applications (Xiong et al., 2018a). Accordingly, there is a
great possibility that the cells encounter aging path dependence
problem owing to the adverse effect of cell inconsistency and
complex, uncertain operation conditions (Xiong et al., 2018b; Ma
et al., 2015). Unfortunately, battery performance is strongly
relying on its aging state and previous degradation mechanism,
which will eventually harm the reliability and security of the bat-
tery system. Furthermore, the batteries eliminated fromEVsmay be
employed to the echelon-use application (Zhang et al., 2014). Thus,
the accurate diagnosis of the battery aging path and associated
degradationmechanisms is urgently needed to improve the battery
prognostics and health management during operation, and to

provide amore detailed and realistic basis for battery screening and
grouping in echelon-use application.

In order to quantify the health level of the battery, the most
common indicator or notion in the literature is the state of health
(SOH), which represents the specified performance and health state
of a used battery compared to its fresh state (Rezvanizaniani et al.,
2014). Despite the fact there is no clear definition of SOH, battery
different features can be used to identify SOH, such as capacity and
impedance, which correspond to the energy and power capability
of the battery respectively (Waag et al., 2014). Afterwards the
battery SOH diagnosis and estimation can be facilitated to the
determination of the battery characteristic parameters
(Rezvanizaniani et al., 2014; Waag et al., 2014).

Most of the methods reported in the literature, which are
applied to evaluate the battery SOH indirectly or directly, are model
based approaches combined with an optimization algorithm or
filter to identify the parameter and state (Tao et al., 2017; Berecibar
et al., 2016). In detailed, numerous optimization algorithms and
filters have been included in the establishment of those model
based approaches, such as extended Kalman filter (EKF) (Plett,
2004), sigma-point Kalman filter (SPKF) (Plett, 2006), Unscented
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Kalman filter (UKF) (Andre et al., 2013), dual EKF (Zou et al., 2015;
Kim et al., 2012) or multi-scale EKF (Hu et al., 2012; Xiong et al.,
2014), Genetic Algorithm (Chen et al., 2013), support vector ma-
chine (SVM) (Andre et al., 2013) and so on. In addition, the “black
box” or data-driven based methods are also employed to evaluate
the battery SOH. The authors in Ref. (Wei et al., 2011) present an
estimation method based on Dempster-Shafer theory and the
Bayesian Monte Carlo. A capacity estimation method utilizing
improved sample entropy was proposed and evaluated by eight
cells against aging and different temperatures (Hu et al., 2014). An
advanced sparse Bayesian predictive modeling based SOH monitor
is established considering temperature effects in Ref. (Hu et al.,
2016). The authors in Ref. (Chaoui and Ibe-Ekeocha, 2017) pre-
sents an application of dynamically driven recurrent networks
(DDRNs) for SOH estimation in online EV battery analysis. Never-
theless, the same change degree of capacity and impedance may
differ in degradation mechanism inside the battery (Ma et al.,
2015).

In order to be more explicit on such issues, many post-mortem
analyses are carried out to reveal the battery degradation cause.
However, they may lack potential when providing temporal reso-
lution for battery diagnosis and protection during real operation
applications, because these ex-suit methods involve the destruc-
tion and unrecoverable damage of the battery (Dubarry et al., 2012).
To understand battery behavior and degradation bymeasuring only
the voltage and current of the battery in different duty regimes,
incremental capacity analysis (ICA) was advocated by Dubarry et al.
(Dubarry et al., 2006, 2007, 2011; Dubarry and Liaw, 2009) recently
to diagnose the battery aging state and related degradation
mechanisms. This in-suit analysis technique has been verified for
various Li-ion cell chemistries, including LixNi0.8Co0.15Al0.05O2
(NCA) (Dubarry et al., 2006, 2007), LixFePO4 (LFP) (Dubarry and
Liaw, 2009), LixNi1/3Mn1/3Co1/3O2 and LixMn2O4 composite
(NMC þ LMO) (Dubarry et al., 2011). Differential voltage analysis
(DVA), which also belongs to in-suit technique, was used by
Honkura et al. (2011) and Bloom et al., 2005, 2006, 2010 to derive
time related aging behavior in a quantitative manner. ICA and DVA
are used to analyze the battery aging path dependence quantita-
tively specific to Beijing pure electric bus in our previous work (Ma
et al., 2015).

However, it is hard to figure out the contribution of positive and
negative electrode behavior to the cell degradation separately,
because the variations of the features in the IC and DV curves may
come from both electrodes in the cell. Dubarry et al. (2012) pro-
posed a half-cell data based model to understand the evolution of
the IC and DV curves and simulate a variety of “what if” situations
for the quantitative analysis of the electrode contributions to
different cell aging modes. Referring to the concept of this
approach, we propose a half-cell model to simulate and track the
cell aging behavior by optimal calculation, in which the outputs of
the simulation can be used to investigate cell degradation mecha-
nisms quantitatively by the combination of the electrode behavior
and full cell voltage curve. This model is not only a learning tool to
help us understand how battery degrades, but also an effective
diagnostic approach to reveal battery aging mechanisms in real
applications.

1.1. Contribution of the paper

A key contribution of this study is that a battery SOH diagnosis
approach based on open-circuit-voltage analysis and half-cell
model fusion was developed, thus battery degradation mecha-
nisms and their contribution to the battery capacity fade were
investigated in a quantitative manner. In our approach, the PSO
algorithm is employed to identify the half-cell model parameters

based on the electrode behavior and battery performance at
different aging levels, which are applied to diagnose the battery
degradationwith the fusion of the OCV analysis. In addition, the ICA
and DVA combined method is applied to analyze the OCV varia-
tions. Our approach offers a unique simulation capability with
mechanistic understanding of battery fade to address aging path
dependence, which offers the benefits of wide applicability to
various cell chemistries.

1.2. Organization of the paper

The remainder of the paper is organized as follows: Section 2
describes the half-cell model and model parameter identification
method based on PSO. And battery SOH diagnosis approach based
on OCV analysis and half-cell model fusion is also presented in this
Section. To evaluate the proposed approach, eight commercial
lithium-ion cells are used to establish the cycle life test database in
the study. The experiment and results are described in Section 3
and 4. The evaluation of the proposed approach is discussed in
Section 5 before conclusions are drawn in Section 6.

2. Synthesized battery state-of-health diagnostic approach

2.1. Half-cell model descriptions

The half-cell model developed in the paper consists of two
layers: a bottom layer using half-cell data that characterize the
positive and negative electrode behavior and a top layer that
describe cell configuration and performance at different aging
stages. The bottom layer employs two separated half-cell data to
handle the electrode behavior against voltage and capacity varia-
tion. The top layer builds the relationship between two electrodes
and a full cell by using equations, considering electrode composi-
tion, material properties and ratio relation as a function of degra-
dation level. The half-cell model is configured to simulate and track
the cell aging behavior by optimal calculation, in which the cell
performances in aging are also inputs to the simulation. The out-
puts of the simulation, in other words the model parameters, are
capacity and initial SOC variations of two electrodes as a function of
aging that reflect the changes of electrode composition and their
ratio relation. Then cell degradation modes andmechanisms can be
determined in a quantitative manner.

The architecture of the half-cell model in this work is shown in
Fig. 1. Our model accommodates electrode-specific phenomena, in
which the cell and its internal electrode behavior are combined and
applied to the model calculation. And the model outputs can
directly quantify the cell degradation mechanisms at different ag-
ing stages. The model is built in MATLAB to simulate cell degra-
dation mechanisms with architecture in the configuration of
effective computation, layer integration, and flexibility.

2.2. Model parameter identification based on particle swarm
optimization

The PSO algorithm starts with a random given initial value, and
obtains a different solution by a certain number of iterations.
Finally, the optimal solution is obtained by using the fitness value as
the evaluation index. In m dimensional search space, the popula-
tion X¼(X1, X2, …, Xi, …, Xn)T is composed of n particles, in which
the velocity and individual extremum of the particle i are Vi¼(Vi1,
Vi2,…, Vid,…, Vim)T and Pi¼(Pi1, Pi2,…, Pid,…, Pim)T respectively, and
global extremum is Pg¼(Pg1, Pg2, …, Pgd, …, Pgm)T. In each iteration,
the velocity and position of the particle i are updated by Eq. (1) and
Eq. (2).

Z. Ma et al. / Journal of Cleaner Production 193 (2018) 379e390380



Download English Version:

https://daneshyari.com/en/article/8094479

Download Persian Version:

https://daneshyari.com/article/8094479

Daneshyari.com

https://daneshyari.com/en/article/8094479
https://daneshyari.com/article/8094479
https://daneshyari.com

