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a b s t r a c t

Conventional stability assessment of underground tunnels and caverns involves the determination of a

factor of safety in which failure is assumed to occur when the load (stress) of the system exceeds the

resistance. It is widely recognized that a deterministic analysis of the factor of safety gives only a partial

representation of the true margin of safety, since the uncertainties in the design parameters affect the

probability of failure. In this paper, a simplified procedure is proposed for evaluating the probability of

stress-induced instability for deep underground rock caverns for preliminary design applications.

Extensive parametric studies were carried out using a finite difference program to determine the factor

of safety for caverns of various dimensions and rock mass strength. Subsequently, the limit state surface

was determined through an artificial neural network approach following which a simplified reliability

method of evaluating the probability of failure was developed.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the major considerations in the design of an under-
ground rock cavern is the evaluation of its stability since the
excavation of the rock causes a redistribution of the stresses in
the proximity of the underground opening. Various methods have
been proposed to assess the cavern stability, and to assess the
necessary support system to maintain the stability of the excava-
tion. Common empirical methods include the use of rock classi-
fication systems such as the rock mass rating RMR [1] and Q

methods [2]. Common numerical methods used to evaluate
cavern stability can be categorized as continuum methods such
as the Finite Element Method (FEM) [3] and Finite Difference
Method (FDM) [4], and discontinuum methods such as the
Distinct Element Method (DEM) [5] and the Discontinuous
Deformation Analysis (DDA) [6]. The selection of a continuum
or discontinuum approach depends on the size or scale of the
discontinuities with respect to the size or scale of the problem
that needs to be solved. There are no universal quantitative
guidelines to determine when one method should be used instead
of the other [7].

Conventional deterministic evaluation of stability of geotech-
nical structures and underground openings involves the use of a
factor of safety FS which considers the relationship between the
resistance R and the load (stress) S. The boundary separating the
safe and failure domain is the limit state surface (boundary)

defined as:

GðxÞ ¼ R�S¼ 0 ð1Þ

where x denotes the vector of the random variables. Mathema-
tically, R4S or G(x)40 would denote a ‘safe’ domain, and RoS

or G(x)o0 would denote a ‘failure’ domain. For underground
caverns, the limit state surface G(x) is not known explicitly.
Instead, it may be known only implicitly through a numerical
procedure such as the finite element method. Therefore, the
failure domain only can be found through repeated point-by-
point numerical analyses with different input values. A closed-
form limit state surface then is constructed artificially using
polynomial regression methods.

However, polynomial regression models become computation-
ally impractical for problems involving a large number of random
variables and nonlinear limit state functions, particularly when
mixed or statistically dependent random variables are involved.
An alternative modeling technique is the use of neural networks.
A neural network is a computer model whose architecture
essentially mimics the knowledge acquisition and organizational
skills of the human brain. A neural network consists of a number
of interconnected neurons, which are logically arranged into
two or more layers and interact with each other via weighted
connections. These weights determine the nature and strength of
the influence between the interconnected neurons. There is an
input layer where data are presented to the neural network, and
an output layer that holds the response of the network to the
input. It is the intermediate layers, also known as hidden layers
that enable these networks to represent and compute compli-
cated associations between patterns. The back-propagation
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neural network (BPNN) learning algorithm is widely used because
of the simplicity. The general objective of ‘training’ the neural
network is to modify the connection weights to reduce the errors
between the actual target outputs to a satisfactory level. This
process is carried out through the minimization of the defined
error function using the gradient descent approach. After con-
vergence occurs (i.e. the errors are minimal), the associated
trained weights of the model are tested with a separate set of
testing data. This testing is used to assess the generalization
capability of the trained model to produce the correct input–
output mapping.

Even after obtaining the limit state surface, due to the
uncertainties in the design parameters (random variables) in the
limit state surface, it is impossible to predict the state of the
system with accuracy. The alternative is to assess the probability
of failure Pf. The calculation of Pf involves the determination of the
joint probability distribution of R and S and the integration of the
Probability Density Function (PDF) over the failure domain. For a
problem with multiple n random variables, the calculation of Pf

involves the determination of a multi-dimensional joint PDF of
the random variables and the integration of the PDF over the
failure domain.

A well-developed approximate alternative is to use the First-
Order Reliability Method (FORM) [8]. Its popularity results from
the mathematical simplicity, since only second moment informa-
tion (mean and standard deviation) on the random variables is
required to calculate the reliability index b. Some examples of the
use of FORM in rock mechanics have been presented [9,10].
Mathematically, b can be computed [11] as

b¼min
xA F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�mi

si

� �T

½R��1 xi�mi

si

� �s
ð2Þ

in which xi is the set of n random variables, mi is the set of mean
values, R is the correlation matrix and F is the failure region. The
minimization in Eq. (2) is performed over F corresponding to the
region G(x)¼0. Low and Tang [11] had shown that an EXCEL
(Microsoft) spreadsheet environment can be used to perform the
minimization and determine b. If the random variables have
probability distributions close to normal, then Pf can be obtained
from the expression:

Pf �Fð�bÞ ð3Þ

in which F(�b) is the value of the cumulative probability. This
value can be obtained from tables of the standard cumulative
normal distribution function found in many textbooks or from
built-in functions in most spreadsheets.

This paper utilizes the rock mass classification correlations and
the numerical procedure known as the shear strength reduction
technique to calculate the global factor of safety FS with regard to
stress-induced instability. The BPNN is used to determine an
empirical equation relating FS to the cavern dimensions B and H,
as well as the rock mass quality Q. Charts based on this equation
are presented for preliminary design purposes. A FORM spread-
sheet is implemented with the neural network algorithm to
calculate the reliability index (probability of failure) for cavern
stability.

2. Numerical model of rock cavern

The FLAC3D code (Itasca) was used to carry out the stability
analyses of the underground rock caverns using the shear
strength reduction technique. The shear strength reduction tech-
nique is available in many commercial finite element and finite
difference programs. The technique has been applied to a number

of geotechnical problems including rock caverns [12,13] and
circular tunnels [14].

The procedure essentially involves repeated analyses by pro-
gressively reducing the shear strength properties until collapse
occurs. For a Mohr–Coulomb material, by reducing the shear
strength by a factor F the shear strength equation becomes

t
F
¼

c

F
þsn

tanf
F

ð4Þ

F ¼
t

cnþsntanfn
ð5Þ

where t is the shear strength, sn is the normal stress, and
cn ¼ c

0

F and fn
¼ arctan tanf

F

� �
are the new Mohr–Coulomb shear

strength parameters. Systematic increments of F are performed
until the finite element or finite difference model does not
converge to a solution (i.e. failure occurs). The critical strength
reduction value which corresponds to non-convergence is taken
to be the factor of safety FS.

Only stress-induced failure was considered in this paper. In the
FDM analyses, the three parameters that were varied were: the
Tunneling Quality Index Q value, the cavern width B and cavern
wall height H. Q cannot be directly used in the FLAC3D calcula-
tions, though it is a commonly used quality index representing
rock mass competence. In the analyses, the discontinuous nature
of the rock is incorporated implicitly in the Mohr–Coulomb
constitutive relationship used to represent the mass as an
equivalent continuum. The rock mass properties are indirectly
(through RMR) determined from the Q value by means of
empirical equations as shown in Table 1. The Q value of each
category and its corresponding Mohr–Coulomb rock properties to
be used in the numerical calculation are shown in Table 2, in
which the c, f and E values are related to Q through the equations
in Table 1. It should be noted that these relationships are intended
to provide the initial estimates of the rock mass properties and
should be used with caution in engineering design. It should also
be pointed out that numerical analyses with the in-situ stress
ratio K0 in the range of 1–3 were also carried out. While the K0

was found to significantly influence the state of stress and
magnitude of displacements in proximity to the cavern, it had
minimal influence on the FS and was therefore omitted as one of
the design variables.

The cross-section of the cavern and boundary conditions are
shown in Fig. 1. The cavern roof arc is semi-circular and the
overburden height D from the ground surface to the top of the
side wall is 100 m. The cavern length in the longitudinal direction
is assumed as 1 m to simulate plane strain conditions. Outer
boundaries are located far from the cavern to minimize the
boundary effects. Full-face excavation is assumed in all analyses.
Table 3 lists the design parameters and the values that were
considered. Input file for each FLAC3D execution includes a
geometry model (B and H) and a mechanical model of Q-related
rock mass properties.

For each numerical analysis, the safety factor FS was deter-
mined based on the strength reduction technique. Different
combinations of Q, the cavern width B and the side cavern height

Table 1
Empirical equations relating Q with rock mass properties.

Properties Equations References

RMR from Q value RMR¼ 7ln Qþ36 [15]

Cohesion c (MPa) cðMPaÞ ¼ 0:005ðRMR�1Þ [1]

Friction angle f (deg.) f¼ 0:5RMRþ4:5 [1]
Deformation modulus

E (GPa)
E¼ EmðGPaÞ ¼ 2RMR�100 ðRMR450Þ

E¼ EmðGPaÞ ¼ 10ðRMR�10Þ=40
ðRMRr50Þ [16,17]

A.T.C. Goh, W. Zhang / International Journal of Rock Mechanics & Mining Sciences 55 (2012) 157–163158



Download	English	Version:

https://daneshyari.com/en/article/809465

Download	Persian	Version:

https://daneshyari.com/article/809465

Daneshyari.com

https://daneshyari.com/en/article/809465
https://daneshyari.com/article/809465
https://daneshyari.com/

