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a Earth Science and Resource Engineering, QCAT, CSIRO, Pullenvale, Australia
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a b s t r a c t

Instabilities in rock structures involve coupled mechanisms related to both deformations along existing

discontinuities and brittle fracture of intact rock. Conventional kinematic and limit equilibrium

techniques used to study rock slope stability suffer from oversimplifications. Mass strength degradation

and progressive failure mechanisms in rock bridges cannot be ignored and must be considered to

predict the overall slope behaviour. A 3D numerical model based on the discrete element method has

been developed to overcome these limitations. Pre-existing discontinuities as a Discrete Fracture

network (DFN) can be initially plugged into a set of discrete elements combined with the use of a

modified contact logic which provides an explicit representation of joints. Both fracturing of intact

material and yielding within discontinuities can therefore be reproduced, depending on the loading

conditions and material strength. Simulations of referenced experimental tests are presented here to

show the capabilities of the model in tackling the failure mechanisms of intact rock in the presence of

pre-existing discrete fractures, with an emphasis on the initiation and propagation processes. This

model proves to be a promising tool in understanding and predicting instabilities that could lead to the

failure of fractured rock slopes.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Instabilities occurring in rock slopes are generally related to
the presence of pre-existing discontinuities and the limit equili-
brium method which involves a representation of the slope as a
set of rigid blocks remains the most commonly adopted approach
to assess potential slope failure [1]. However, back analyses have
shown that for numerous cases, non-persistent discontinuities (or
often observed joints) are involved in the failure process and it is
the breakage of rock bridges between those joints that is mainly
at the origin of the rock mass destabilization [1–3]. This progres-
sive failure mechanism would also explain the time delay
between the initial localised surface deformation and the entire
slope failure. Thus, if in most cases progressive failure mechan-
isms of rock bridges lead to global failure, a model to study rock
slope stability should encompass the nucleation or activation of
cracks within the rock matrix and their possible coalescence
which would then lead to the creation of critical fractures
connecting the pre-existing ones.

Different techniques have been developed to deal with sets of
non-persistent discontinuities. For example, using stochastic
techniques, Einstein et al. [4] made an attempt to relate rock
mass stability with persistence in the geometry and the spatial
variability of discontinuities. However, this approach was based
on the limit equilibrium analysis and therefore, remained limited
in reproducing and understanding the progressive nature of slope
failure. More recently, numerical methods have led to significant
enhancements in rock slope stability analysis, wherein some of
the characteristic features of a fractured rock mass (e.g., Discrete
Fracture Network, anisotropy, 3D effects or non-linear behaviour,
hydro-mechanical coupling). Although classical continuous or
discrete approaches in their initial formulation do not seem
adapted to describe the progressive failure mechanisms in jointed
rock, several attempts have been made to extend their capabil-
ities. For example, Wang et al. [5] demonstrated that the applica-
tion of a particle flow code can provide valuable insights into the
stability analysis of heavily jointed rock slopes. Eberhardt et al. [2]
have shown that a coupled FEM/DEM formulation [6,7] can
reproduce observed failure mechanisms by taking advantage of
both continuous and discrete approaches (case study: 1991 Randa
rockslide). The RFPA code recently developed by Tang et al. has
also been enhanced to simulate the actual failure of fractured rock
slopes [8]. However, to our knowledge, all these previous studies
were performed in 2D. A further step is therefore to develop 3D
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models that can reproduce the complex combination of intact
material fracturing and yielding within discontinuity planes.
Using a discrete approach, a 3D simulator for jointed rock slopes
which accepts DFN has been recently developed by Itasca [9]. It is
based on a lattice formulation where fractures can propagate
through the intact medium. Although this new approach seems
very promising for its dedicated purpose (i.e. large scale simula-
tions), it still needs to be thoroughly tested before real stability
studies should be considered. As part of this validation process,
the objective of the present work is to show that this type of
approach (i.e. discrete model) can provide an accurate and
reliable description of the key mechanisms that lead rock slopes
to failure.

A 3D model for fractured rock is presented here. Implemented
into YADE Open DEM [10,11], the model uses a discrete repre-
sentation of the intact rock mass, in which a DFN can be plugged
in a straightforward way as a set of planes representing the
discontinuities (joints). These joints can then be simulated with
both rough surfaces resulting from DE shapes, or using a modified
contact logic where interactions between Discrete Elements (DE)
are setup depending on the orientations of the joint surfaces [12].

First, the formulation of the model will be given and its ability to
simulate a typical rock-like behaviour will be shown. Then, uniaxial
compression tests on a pre-flawed sample will be presented to
emphasise the relevance of the model in reproducing the so-called
‘‘wing crack’’ extensions usually observed around penny shaped
cracks. The model capabilities in terms of crack propagation and
coalescence will then be discussed on the basis of direct shear test
simulations performed on a discontinuous joint made up of pre-
existing ‘‘en echelon’’ cracks as depicted in Gehle and Kutter
experiments [13]. Finally, model predictions will be investigated at
the scale of a rock slope with an emphasis on its capacity to
reproduce two of the keys mechanisms usually involved in the
development of the progressive failure surface, namely step-path and
flexural toppling failure modes.

2. Formulation of the model

The algorithm used in the present Discrete (or Distinct)
Element Method (DEM) [14], involves two steps. First, based on
constitutive laws, interaction forces between Discrete Elements
(DE) are computed. Second, Newton’s second law is applied to
determine, for each DE, the resulting acceleration, which is then
time integrated to find the new position. This process is repeated
until the simulation is finished. All developments and simulations
described in this paper have been implemented into the YADE
Open DEM platform [10,11].

2.1. Constitutive law

For small deformations, rock exhibits a linear elastic response
characteristic of geomaterials. To reproduce this behaviour, linear
elastic interaction forces between the discrete elements are suffi-
cient. In the present model, the interaction force F which represents
the action of DE a on DE b may be decomposed into a normal force
Fn and a shear force Fs which are related to the relative normal and
incremental shear displacements through the stiffnesses, Kn and Ks,
in the normal and the tangential directions, respectively.

Once the DE’s packing has been generated to form the
numerical sample, pairs of initially interacting Discrete Elements
are identified within an interaction range gint, such that,

Deq ¼ gintðRaþRbÞ ð1Þ

where Deq is the initial equilibrium distance, Ra and Rb the radius
of elements a and b respectively, and gintZ1.

Contrary to classical DEM which only considers strictly con-
tacting DE (i.e. gint ¼ 1), the initial number of interacting links
(also referred to here as the coordination number) can thus be
controlled, whatever the granular packing, by simply varying gint

before the first timestep of the computation cycle [15].
The normal interaction force is calculated through the local

constitutive law (see Fig. 1) and can be split into two parts, the
compressive and the tensile components. In compression, Fn is
linear and it is given by,

Fn ¼ Kn DD ð2Þ

where Kn is the normal stiffness and DD is equal to the relative
displacement between the interacting DE defined as DD¼D�Deq,
with D being the distance between the centroids of the
interacting DE.

In tension, the normal interaction force is also linear using the
same stiffness for small deformations. The maximum acceptable
tensile force Fn,max is defined as a function of the tensile strength T

such that,

Fn,max ¼�TAint ð3Þ

where Aint¼p(min(Ra,Rb))2 is the interacting surface between DE a

and b.
After the tensile force reaches its maximum value, the stiffness

may be modified by a softening factor z to control the energy
released due to link breakage:

Fn ¼ ðDD�DruptureÞ
Kn

z
ð4Þ

When DD4Drupture, rupture occurs and interaction forces are
set to zero.

The shear force Fs is computed in an incremental manner by
updating its orientation and intensity depending on the incre-
ment of shear force DFs¼Ks Dus which develops at the interaction
point, as defined in [16]:

Fs ¼ fFsgupdatedþKsDus ð5Þ

with Ks being the shear stiffness and Dus the relative incremental
tangential displacement.

To model the nonlinear behaviour of geomaterials, a modified
Mohr–Coulomb model is used (Fig. 2). The maximum shear force
Fs,max is characterised by the normal force Fn, the cohesion C, the
local frictional angle jb and the local residual frictional angle jc.

The maximum shear force is calculated for a bonded interac-
tion according to,

Fs,max ¼ Fn tan jbþCAint ð6Þ

whereas only purely frictional new contacts can appear during
the simulation, with a maximum shear force defined as,

Fs,max ¼ Fn tan jc ð7Þ

Because the proposed DEM is a fully dynamic formulation, a
local non-viscous type damping is used in the model in order to

Fig. 1. Normal interaction force between DE.
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