Accepted Manuscript

Efficient removal of arsenate from oxic contaminated water by colloidal humic acidcoated goethite: batch and column experiments

Daniela Montalvo, Ruth Vanderschueren, Andreas Fritzsche, Rainer U. Meckenstock, Erik Smolders

PII:	S0959-6526(18)31074-6
DOI:	10.1016/j.jclepro.2018.04.055
Reference:	JCLP 12636
To appear in:	Journal of Cleaner Production
Received Date:	24 October 2017
Revised Date:	05 April 2018
Accepted Date:	06 April 2018

Please cite this article as: Daniela Montalvo, Ruth Vanderschueren, Andreas Fritzsche, Rainer U. Meckenstock, Erik Smolders, Efficient removal of arsenate from oxic contaminated water by colloidal humic acid-coated goethite: batch and column experiments, *Journal of Cleaner Production* (2018), doi: 10.1016/j.jclepro.2018.04.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Word count:7572

2 3	Efficient removal of arsenate from oxic contaminated water by colloidal humic acid- coated goethite: batch and column experiments
4 5	Daniela Montalvo ^{*1} , Ruth Vanderschueren ¹ , Andreas Fritzsche ² , Rainer U. Meckenstock ³ , and Erik Smolders ¹
6	
7 8	¹ Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg, Heverlee, Belgium
9	² Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, D-07749 Jena, Germany
10	³ Biofilm Centre, University Duisburg-Essen, 45141 Essen, Germany
11	*Corresponding author E-mail address: daniela.montalvogrijalva@kuleuven.be
12	
13	Abstract
14	Arsenic (As) contamination of groundwater frequently occurs and there is a need for cost-
15	effective in situ remediation techniques. The injection of iron oxide colloids coated with
16	humic substances has been proposed. This technology is based on injecting mobile humic
17	acid-coated goethite colloids that are subsequently deposited by aggregation in the
18	contaminated zone where the ionic strength is large, thereby creating an in situ reactive
19	barrier for As. While coagulation and deposition are desirable for colloid immobilization, its
20	effect on adsorption properties have been previously overlooked. This study was set up to
21	investigate if i) humic acid-coated goethite colloids retain their As(V) adsorption properties
22	after coagulation in quartz sand and ii) if batch As(V) adsorption data can predict As
23	immobilization in columns at variable flow conditions. Equilibrium batch adsorption
24	experiments showed that humic acid-coated goethite colloids coagulated and deposited on
25	quartz sand have equal As(V) adsorption capacity, but two-fold lower affinity than humic
26	acid-goethite colloids in suspension. This results indicated that there were some interactions
27	between the sand and colloids but the overall adsorption capacity was not affected. Column
28	experiments using sand coated with humic acid-goethite colloids (2.80 mg goethite g ⁻¹ sand)
29	and stepwise injection of As(V) (1 4.9 mg As L ⁻¹) showed a highly efficient As(V) removal
30	from the liquid phase as the outflow As(V) concentrations remained below the drinking water
31	limit (10 μ g As L ⁻¹) until about 45% of the sorbent capacity (30 mg As g ⁻¹ goethite) was
32	reached. The flow rate dependent leachate As concentrations, including responses to stop-
33	flow events, illustrated non-equilibrium sorption. The equilibrium batch adsorption

Download English Version:

https://daneshyari.com/en/article/8095191

Download Persian Version:

https://daneshyari.com/article/8095191

Daneshyari.com