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a b s t r a c t

A series of simulations for hydraulic fracturing in competent rock was performed by using the flow-coupled

DEM code to discuss the influence of the fluid viscosity and the particle size distribution. The simulation

results show good agreement with experimental results that contain the AE measurement data. The following

observations can be made. When a low viscosity fluid is used, the fluid infiltrates into the fracture

immediately. On the other hand, when a high viscosity fluid is used, the fluid infiltrates slowly into the

crack after the fracture first elongates. Although tensile cracks are dominantly generated in the simulation,

the energy released from a tensile crack becomes small because the tensile strength of rock is obviously small

compared with the compressive strength. Such a small AE is easily buried in a noise and difficult to be

measured in an experiment. Therefore, in AE measurement experiment, shear type AE with large energy is

dominantly observed, as many previous researches have indicated.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To better understand the mechanics of hydraulic fracturing, a
considerable amount of research has been carried out in the past few
decades. According to the conventional theory, hydraulic fracturing is
formed by tensile crack generation [1]. On the other hand, the shear
type mechanisms was observed in most of the acoustic emission (AE)
events recorded during the laboratory and field hydraulic fracturing
experiments [2–5]. Ishida et al. [6] carried out a laboratory hydraulic
fracturing experiments using low viscosity water and higher viscosity
oil. The source mechanisms of AE events indicates that shear type
mechanisms are dominant when low viscosity fluid is injected, and
both shear and tensile type mechanisms are observed when high
viscosity fluid is injected.

In addition, Matsunaga et al. [7] conducted hydraulic fracturing
experiments for various rocks and acrylic resin, and found that rock
texture, such as grain size, affects the hydraulic fracturing mechan-
ism. Ishida et al. [6] extended this work and the hydraulic fracturing
experiments were conducted for four different types of granitic rock
specimens with different grain size in order to investigate the
influence of grain size on induced crack geometry and fracturing
mechanism [8–10]. The fault plane solutions of AE indicated that the
dominant micro-fracturing mechanism becomes tensile rather than
shear with decreasing grain size. Their experimental results indicate
that texture of rock like grain size of granitic rocks considerably

affects the geometry, surface roughness and microcracking mechan-
ism of hydraulically induced cracks.

To give a rational explanation for such disagreement between
conventional theory and AE monitoring, and to better understand the
hydraulic fracturing mechanism, various numerical analysis techni-
ques have been developed. The Finite Element Method (FEM) and the
Boundary Element Method (BEM) have been commonly used to
simulate hydraulic fracturing in complex three-dimensional struc-
tures [11,12]. Al-Busaidi et al. [13] simulated hydraulic fracturing in
granite by using the distinct element method (DEM), and the results
were compared with the AE data from the experiment. However, the
simulation results showed that the disagreement mentioned above
was not solved successfully. Therefore, the mechanism of hydraulic
fracture propagation has not been sufficiently clarified.

In this paper, a fluid flow algorithm that can consider the fluid
viscosity and permeability is introduced into the DEM program to
reproduce the hydraulic fracturing. A series of simulations for
hydraulic fracturing in hard rock was performed by using the flow-
coupled DEM code to discuss the influence of the fluid viscosity and
the particle size distribution, and to obtain insights that gave the
rational explanation to the disagreement between conventional
theory and the AE monitoring results.

2. Simulation methodology

2.1. Formulation of mechanics of bonded particles

The DEM for granular materials was originally developed by
Cundall and Strack [14]. They developed a well-known commercially
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available DEM code (particle flow code (PFC)) [15]. In this study, two-
dimensional distinct element method (2D DEM) was employed, and
we have written our own DEM code to study hydraulic fracturing.
Since thorough details of fundamental DEM algorithm can be found
in [14,15], only a summary of the primary differences between the
DEM code used in this research and the parallel-bond model in the
PFC2D code [15] will be given.

Although the DEM is one of the numerical techniques based on
the discontinuum model, it can be applied also to the continuum
by introducing bonds between particles. In two dimensional DEM,
the intact rock is modeled as a dense packing of small rigid
circular particles. Neighboring particles are bonded together at
their contact points with normal, shear, and rotational springs
and interact with each other.

The increments of normal force fn, the tangential force fs, and
the moment fy can be calculated from the relative motion of the
bonded particles, and are given as

fn ¼ knðdnj�dniÞ ð1Þ

fs ¼ ks dsj�dsi�
L

2
ðdyjþdyiÞ

� �
ð2Þ

fy ¼ kyðdyj�dyiÞ ð3Þ

where kn, ks, and ky are the stiffnesses of normal, shear, and
rotational springs, respectively; dn, ds, and dy are normal and
shear displacements and rotation of particles; ri and rj are the radii
of the bonded particles. A bond between the particles is presented
schematically as a gray rectangle in Fig. 1, where L and D are the
bond length and the bond diameter, respectively. D is obtained
from harmonic mean of the radius of two particles. L and D are
given by

L¼ riþrj ð4Þ

D¼
4rirj

riþrj
ð5Þ

Since the DEM is formulated as a fully dynamic system, small
amounts of viscous damping are necessary to provide dissipation
of high-frequency vibration. If contact damping is not introduced,
the assemblies will not be able to reach equilibrium. Contact
damping operates on the relative velocities at the contacts and is
represented by dashpots acting in the normal and shear directions
at the contact points.

Since the simulation of laboratory rock tests, such as uniaxial
compression test, require quasi-static loading, the coefficients of
viscous contact damping are determined to provide critical
viscous damping that approximates quasi-static loading. The
coefficients of viscous contact damping in both normal and
shear directions are given by Cn and Cs, respectively, with the

following equations:

Cn ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
mijkn

q
ð6Þ

Cs ¼ Cn

ffiffiffiffiffiffiffiffiffiffiffiffi
ks=kn

q
ð7Þ

where mij is given by the mass of two particles mi and mj, as
follows:

mij ¼
2mimj

miþmj
ð8Þ

If the stiffness of the springs, kn, ks, and ky are set as tuning
parameters treated independently, a large effort will be required
to determine appropriate values for them. Therefore, the stiffness
of the normal and rotational springs, kn and ky are calculated
using beam theory, and the stiffness of shear springs ks is
calculated by multiplying the stiffness of the normal spring kn

and a constant stiffness ratio a. Thus, the stiffness of the springs
given by the following equations:

kn ¼
EpA

L
ð9Þ

ks ¼ akn ð10Þ

ky ¼
EpI

L
ð11Þ

where A is the cross-sectional area of the bond, and I is the
moment of inertia of the bond. Ep is Young’s modulus of particle
and bonds. The moment of inertia I depends on the shape of the
cross-section, and rectangular cross-section is assumed in
this study.

Young’s modulus Ep assigned to the particles and the stiffness
ratio a are microscopic parameters, and these values are different
from Young’s modulus and Poisson’s ratio of the rocks obtained
from the laboratory experiments and simulation of the uniaxial
compression tests.

The normal stress s and shear stress t acting on the cross-
section of the bond are calculated using the following equations.
The stress and the strain are positive in compression:

s¼ fn

D
ð12Þ

t¼ fs

D
ð13Þ

2.2. Microcrack generation

When s exceeds the strength of normal spring sc or t exceeds
the strength of shear spring tc, then the bond breaks and three
springs are removed from the model altogether. The criterions for
bond break are summarized as follows. They imply that the
normal spring breaks only by tension, and compression does not
cause the bond breaks.

Bond break criterion 1: 9s9Zsc and so0 (tensile stress)
Bond break criterion 2: 9t9Ztc

Each bond breakage represents the generation of microcracks.
A microcrack is generated at the contact point between two
particles. A crack length is assumed to be the same as the bond
diameter D, and the direction of it is perpendicular to the line
joining the two centers.

In the parallel-bond model developed by Potyondy and
Cundall [15], the moment acting on the parallel-bond (which is
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Fig. 1. Bonded particles model.
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