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ABSTRACT

This study addresses the impact of spatial variability on the angle of distortion between two footings in
rock masses. A simple elasto-perfectly-plastic model based on the Hoek-Brown criterion is taken to
simulate the spatial variation of rock mass properties in the finite element analyses. This model is
calibrated by a large rock mass database. With Monte Carlo simulations, stochastic samples of angle of
distortion between two footings are obtained, which are further used to derive reliability-based
allowable bearing stresses. The analysis results show that the geological strength index (GSI) of rock
masses and uniaxial compressive strength of intact rock are the two dominate factors that affect the
reliability-based design. Comparisons to the existing codes show that these codes are appropriate for
poor to fair rock masses, conservative for good to very good rock masses and un-conservative for very
poor rock masses.

Reliability-based design

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Intact rocks are usually considered as competent materials in
terms of the strengths and deformability. However, fractured rock
masses can behave quite differently from intact rocks. In parti-
cular, unacceptable settlement may occur for rock masses that
are highly fractured and highly varying in space. Behaviors of
foundations on spatially variable soils have been studied for
years. For stability analyses, Cherubini [1] considered the ultimate
bearing capacity on an idealized c-¢ soil, incorporating spatial
averaging effect. Popescu et al. [2] implemented full random field
finite element analyses, considering spatial correlation. More
recently, Cho and Park [3] further investigated the effect of
cross-correlation between the random fields of various soil
properties. For deformation analyses, Fenton and Griffiths [4],
Nour et al. [5] and Houy et al. [6]studied differential settlements,
while Fenton and Griffths [7] considered three-dimensional
analyses, modeled by three-dimensional random fields of elastic
modulus. Breysse et al. [8] considered the impact of soil-structure
interaction in random fields.

Quantification of spatial variabilities in shear strengths and
deformability properties of rock masses is challenging. This may
be due to the following reasons: (a) statistical data for spatially

* Corresponding author. Tel.: +886 2 33664328; fax: +886 2 23631558.
E-mail address: jyching@gmail.com (]. Ching).

1365-1609/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijrmms.2011.05.005

variable rock masses, including the coefficients of variation and
scales of fluctuation, are scarce; (b) rock masses are mechanically
complicated, partially due to the presence of joints, beddings or
even faults. For shear strengths of rock masses, Hoek and Brown
[9] proposed the well-known Hoek-Brown failure criterion for
heavily fractured rock masses. It is parameterized by three
parameters, including the geological strength index (GSI), and
the Hoek-Brown’s constant m;, and the uniaxial compression
strength o for intact rock. Efforts to quantifying these three
parameters have been taken: Hoek et al. [10,11] provided charts
to quantify the range of GSI based on the appearance (structures
and surface conditions) of the rock masses. Marinos and Hoek
[12] summarized a table of possible ranges for the m; parameter
for various rock types. This table is reproduced herein in Table 1.

For deformability of rock masses, the deformation modulus of
rock masses E,, is correlated to rock mass rating (RMR) [14-18],
to rock quality index (RQD) [19,20], to Q index [21], and to GSI
[13,22]. Among them, Hoek and Diederichs [13] compiled a large
database for E,, based on field tests conducted in China and
Taiwan. They further proposed a GSI-based correlation model for
predicting E,,.

Based on the aforementioned results and database, this
study aims to construct a random field model for the spatially
variable shear strengths and E,, of highly fractured rock masses,
and subsequently to conduct probabilistic analyses for angle of
distortion between two footings on rock masses. Efforts are made
to quantify the variability in shear strengths and E,,, including
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Table 1

Typical m; and modulus ratio (MR) values, and their ranges for various rock types (ranges adopted from [12,13]).

Sedimentary/(m;)/[MR]

Metamorphic/(m;)/[MR]

Igneous/(m;)/[MR]

Sandstones (17 +4) [200-350]
Siltstones (7 + 2) [350-400]
Claystone (4 + 2) [200-300]
Shales (6 +2) [150-250]
Limestone (11 +4) [400-1000]
Chalk (9 +3) [100+]

Marble (9 + 3) [700-1000]
Gneiss (28 +5) [300-750]
Schists (12 +3) [250-1100]

Granite (32 + 3) [300-550]
Tuff (13 + 5) [200-400]

their scales of fluctuation. Random field finite element analyses
are further conducted to simulate the angle of distortion of the
footings. Based on the simulation results, reliability-based design
tables and charts for allowable bearing stress are developed.

2. Random field models

Spatial variabilities of rock properties can be modeled as
random fields. Among random field models, stationary lognormal
random fields are widely used for rock properties due to their
simplicity and also due to the fact that most rock properties are
non-negative. A stationary lognormal random field can be simu-
lated by taking exponential of a stationary Gaussian random field,
which can be in turn simulated by adding a desirable shift term to
a zero-mean stationary Gaussian random field &(h,z), where h and
z denotes horizontal and vertical coordinates, respectively. The
two-dimensional (2-D) zero-mean stationary Gaussian random
field &(h,z) can be characterized by its standard deviation ¢ and
auto-correlation function p:(Ah,Az).

2.1. Auto-correlation function

The auto-correlation function of a 2-D stationary random field
£(h,z) is defined to be the correlation between two locations with
horizontal distance of Ah and vertical distance of Az:

COV(&(h,z),E(h+Ah,z+Az
p.(AhAZ) = ((h,2),&( ) 1)
/VAR(¢(h,z)) \/VAR(E(h+Ah,z+ Az))
where VAR denotes the variance, and COV denotes covariance. In
the case that the vertical and horizontal variabilities are decoupled,
a popular 2-D auto-correlation model is as follows [23]:
p:(Ah,Az) = exp <— M - M)
511 bz
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where 0, and 9, are the horizontal and vertical scales of fluctuation
(SOF), respectively. The SOF is sometimes called the correlation
length: rock properties of two locations with distance less than the
correlation length are correlated, and vice versa. Moreover, the
magnitude for correlation decreases as the distance increases. This
manifests the common observations in natural rocks: properties
are strongly correlated within a small interval and are weakly
correlated for a large interval.

2.2. Simulation of zero-mean stationary Gaussian random fields

Simulations of zero-mean stationary Gaussian random fields
&(h,z) over a rectangular domain of size L x L, can be achieved
through the Fourier series expansion as follows:
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where Re denotes the real part of the enclosed complex number,
and d,,, and b,,, are independent zero-mean Gaussian random
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Fig. 1. Realization of &(h,z) (left plot) and its local averaging over the elements
(right plot: the domains of the elements are shown in the z-h plane).

variables with the following variance:
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(See Appendix A for the derivations of this variance.) This
variance term depends on the standard deviation ¢ and the SOFs.
The real part of Eq. (3) is a sample of the random field &(h,z). It is
not necessary to sum up the infinite terms in Eq. (3) because o2,
usually decays very rapidly with increasing |m| and |n|. In this
study, we found that it is only necessary to sum up to an |m| or
|n| value corresponding to

1 [5—exp(-L/8)5(~1)™
L 1+m2n26° /12

~107° (5)
without noticeable errors.

2.3. Simulation of local averaging in finite elements

The above equations are useful for generating samples of
continuous function £(h,z). However, in finite element analysis,
a constant average value should be assigned to each element.
A procedure called the local average subdivision (LAS) of achiev-
ing the “local averaging” over each element is developed by
Fenton and Vanmarcke [24]. This procedure requires fairly com-
plicated steps and is limited to finite element meshes with
equally spacing rectangular elements. Fenton and Griffiths [25]
further suggested to conduct the local averaging in the logarithm
space of geotechnical parameters rather than in the original
space, i.e. conducting the local averaging in the &(h,z) space. It is
then necessary to average the sampled &(h,z) over an element
area to obtain the average property for that element. The effect of
local averaging is illustrated in Fig. 1: the left plot is a realization
of the continuous function &(h,z), while the right plot is its local
averaging over the elements.

Suppose the averaged property Ean « a(he.ze) is desirable for a
rectangular element defined by the [h.—Ah/2,h.+Ah[2] and
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