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a b s t r a c t

Energy management strategies for an electric vehicle (EV) with multiple power sources have been widely
described in literature. The investigated energy sources are batteries, ultracapacitors, fuel cells, flywheels
and solar panels. The management strategy decides how to combine two or more sources in an optimal
way. However, the behavior of these sources and also the behavior of the electric drives depend on their
temperature. Moreover, the temperature can have extreme values in automotive applications and affect
the energy management task. In this paper, to investigate the temperature effect on battery/ultra-
capacitor powered EV, temperature dependent models are presented for these storage components, as
well as for the drive train components itself: power electronics and motor. The average motor iron loss
and ultracapacitor loss tend to decrease with increasing temperature, while the average motor copper
loss and power electronics loss tend to increase with increasing temperature. These two opposing trends
cause the total loss of the drive train to have a rather small variation with temperature for the considered
EV and in the considered temperature range. By consequence, the energy management strategy of the EV
does not have to depend on the temperature in order to obtain maximal efficiency.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been an increase in research and
practice on electric vehicles (EVs), along with advances in power
electronics and processor technologies. A review for internal
combustion engine vehicles (ICEV), hybrid electric vehicles (HEV)
and all electric vehicles (AEV) is presented in (Tie and Tan, 2013).
That paper summarized the construction of power electronic
components, energy storage units and management methods. The
efficiency of EVs and the subcomponents used has become very
important because of the petroleum prices and environmental
concerns. Therefore, the energy storage units that affect the effi-
ciency of the vehicle the most and the use of these units together
are examined from all the aspects. None of today's energy storage

units such as battery, fuel cell (FC), ultracapacitor (UC), flywheel
and solar panel are enough to meet all the requirements of the EV
(Hu et al., 2015b; Rezzak and Boudjerda, 2016; Trovao and Antunes,
2015). Hence, the use of two or more of these units is an acceptable
and common solution. Providing the high-energy density required
by the vehicle from the battery and fuel cell, the high-power den-
sity from the components such as the flywheel on the ultra-
capacitor eliminates the disadvantages of the use of the weaker
sides of all these components (Hu et al., 2015a). However, the
combined use of two energy storage system (ESS) is not a simple
matter and requires a good design in all details (Rosario, 2007).

The design and optimization studies about Energy Management
Systems (EMSs) for electric vehicles with multiple energy storage
units in the literature are quite numerous. It is possible to divide the
studies made in this subject into two main groups, rule-based and
optimization-based. Rule-based EMSs including classical and fuzzy
rule based EMSs are preferred because of their simplicity and real-
time ease of implementation (Castaings et al., 2016; Ferreira et al.,
2008; Florescu et al., 2015; Rezzak and Boudjerda, 2016; Rosario,
2007). However, rule based methods do not guarantee that the
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most appropriate management is made and there are some diffi-
culties in determining the rules. Optimization-based EMSs aim at
optimizing energy management in the framework of established
constraints such as energy consumption, carbon emissions, or
conservation of the healthy operation of energy storage units used
(Hu et al., 2016). In optimization-based EMS, manymethods such as
genetic algorithm (GA) (Koroglu et al., 2017; Koubaa and Krichen,
2017), particle swarm optimization (PSO) (S.Y. Chen et al., 2015;
Z. Chen et al., 2015; Koroglu et al., 2017, 2016; Koubaa and
Krichen, 2017; Trov~ao et al., 2013; Trovao and Antunes, 2015),
simulated annealing (SA) (Trov~ao et al., 2013; Trovao and Antunes,
2015), convex programming (Hu et al., 2016, 2015a, 2015b) and
dynamic programming (Wang et al., 2013) are used and better re-
sults are obtained compared to rule based EMS. Heuristic optimi-
zation methods are highly preferred methods in electric vehicle
EMS. Many studies have compared methods such as PSO and SA
and conclude that the PSO is slightly better than the others in terms
of both accuracy and fast results (Trovao and Antunes, 2015). In a
similar research, PSO, GA and a differential evolution algorithm are
used and compared for the EMS of a battery-UC powered EV and it
is concluded that PSO is a fast and more accurate method (Koroglu
et al., 2017). Therefore, PSO is preferred in many studies thanks to
its simple structure, fast response and accurate results.

However, these studies usually focus on minimizing the use of
fuel or electricity, and some other parameters and equipment that
may be important for electric vehicles are neglected or included in a
simplest way. For example, almost all of the papers about optimi-
zation based EMS use the simplest models of the ESS, not including
temperature effect on the componentmodels, mechanical dynamics
of the components and converter-inverter-motor specialties. In
some studies made in this regard, the temperature-dependent
performance changes are included for only one component (Hu
et al., 2016). The effect of temperature on the whole drivetrain
and on the several vehicle components have not been included in
efficiency studies. The literature lacks studies that consider the
temperature influence of all components in the drivetrain.

The novelty of this paper is twofold. Firstly, temperature
dependent component models are developed for all drive train
components: the battery, ultracapacitor, inverter, motor and
gearbox. The second novelty is that these component models are
integrated in a system level model of the EV, in order to observe the
effect of the temperature in these components on the global EMS of
the vehicle. The energy management of the vehicle is achieved in
two stages. The first stage is to restrict the search space of the
optimization method according to conditions of storage devices
and power demand of the vehicle. After determination and re-
striction of the search space, in stage two, power sharing optimi-
zation is implemented with PSO. Finally, comparative results and
conclusion that present the effect of temperature are given.

This paper is structured as follows. Section 2 presents the tem-
perature dependent component models of the vehicle components
and their validation. Section 3 explains the structure of the EMS:
how the system level model for the energy management is built up
consisting of the several component models from Section 2. Section
4 and Section 5 present the effect of temperature on the compo-
nents and EMS, respectively. Finally, conclusions are given in Section
6.

2. Temperature dependent component models for battery,
ultracapacitors, motor and inverter

2.1. Battery

The battery model is developed according to studies (Chen and

Rinc�on-Mora, 2006; Erdinc et al., 2009; Gao et al., 2002; Lo, 2013)
and the datasheet of the used batteries of the designed vehicle. As
indicated in those studies, the battery output voltage can be calcu-
lated by making a temperature dependent Th�evenin equivalent
scheme, consisting of the battery open circuit voltageUOC, the battery
equivalent internal impedance Zeq and the temperature correction of
the battery potential. So, it can be expressed as in Eq. (1).

Ubat ¼ UOC � ibat*Zeq þ DEðTÞ (1)

As the value of battery open circuit voltage is strongly depen-
dent on battery SOC, it has to be modelled with empirically
determined equations or lookup tables for a specific battery. For the
use case in this paper, the UOC of the considered battery can be
calculated by interpolating UOC according to the battery SOC. The
relation between UOC and SOC can be found empirically or obtained
from the datasheet of the battery as shown in Fig. 1.

DE(T) is a potential correction term used to represent the tem-
perature effect on the battery output voltage as described by (Gao
et al., 2002). Also, this term is very “battery-specific”. An example
of the behavior of DE(T) for the LiFePO4 batteries described in (Lo,
2013) is visualized in Fig. 2.

Also, the battery SOC can be expressed as in Eq. (2) for the
simulation process according to ampere count principle.

SOC ¼ SOCinitial �
Z

iBat dt (2)

2.2. Ultracapacitors

A temperature dependent UC model is developed according to
(Shi and Crow, 2008; Vural et al., 2009; Zhang et al., 2016; Zubieta
and Bonert, 2000) and datasheets of used UC (Maxwell
Technologies, n.d.). The UC equivalent circuit used in this paper is
illustrated in Fig. 3, and the equations to obtain the parameters of
this equivalent circuit from the datasheet values are presented in
Table 1 (Shi and Crow, 2008). The first branch is called the fast-term
branch composed of Rf and Cf and represents the charge and
discharge characteristics of the UC for the time interval of a few

Fig. 1. Experimental curve for the battery open circuit voltage versus battery SOC for
LiFePO4 battery.
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