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a b s t r a c t

This study performed a Life Cycle Assessment (LCA) to evaluate the environmental impact of chicken
meat production from a Mexican case study, with a “cradle-to-slaughterhouse gate” approach. To
overcome the LCA's limitations and provide a more holistic picture of the system, simulation and arti-
ficial intelligence techniques were integrated. First, raw material/energy requirements were obtained
from the case study and simulated using Process simulation (PS) and Monte Carlo (MC) simulation to
estimate the emissions and quantify their uncertainty. Then, IMPACT 2002 þ was used to calculate the
overall impact using Ecoinvent and LCA Food databases. The results highlight that chicken farms are the
main factors responsible for the environmental impacts assessed, where feed production (use of
chemicals and energy requirements) and on-farm emissions (organic waste decomposition) are the main
contributors. Concerning the slaughterhouse, the energy production (electricity and steam) and the
cooling-related activities present a significant impact. Afterwards, three impact allocation procedures
(mass method, neural networks, and stepwise regression) were tested, showing similar results. Finally, a
multiobjective optimization model based on a Genetic Algorithm was applied looking to minimize the
environmental impacts and maximize the economic benefits. The selected alternative achieved a
reduction of 15.14% per functional unit at the environmental indicators. The results encourage the use of
support techniques for LCA to perform a reliable assessment and an environmental/economic optimi-
zation of the system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Chicken meat is one of the most consumed food products in the
world (Magdelaine et al., 2008). Not only does the growing world
population cause the high demand of this product, but also its
nutritional benefits, such as a high content of proteins, vitamin B
andminerals, and a low level of saturated fats (Windhorst, 2006). In
parallel, the costumers’ needs have shown an important evolution

toward high-quality food produced under more environmentally
friendly conditions (de Boer, 2003; Gonz�alez-Garcia et al., 2014;
Iribarren et al., 2011; Sala et al., 2017).

Broiler meat production follows two main stages: farms and
slaughterhouses. Slaughterhouses are also called poultry process-
ing plants (PPP). On farms, chickens raise until they gain the desired
weight. Then, they are sent to PPPs to obtain meat. These activities
require large amounts of energy and raw materials, which can
generate environmental impacts (Gonz�alez-Garcia et al., 2014).

Life Cycle Assessment (LCA) is one of the most accepted and
used tools to assess environmental impacts (Nwe et al., 2010; Roy* Corresponding author.
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et al., 2008). LCA helps to quantify and evaluate the emission of a
product from the extraction of raw materials to final disposal,
including manufacture and use (Ekvall, 1999; Sonnemann et al.,
2004). LCA framework involves the goal and scope definition, the
life cycle inventory (LCI) analysis, the life cycle impact assessment
(LCIA), and the interpretation phase (ISO, 1997). Different tools can
be applied to carry out these steps. As recommended by Ekvall et al.
(2007), LCA should be complemented by other techniques to in-
crease its scope and applicability.

Poultry meat production has a lower consumption of resources
and energy than other meat productions; therefore, lower emis-
sions per unit of live weight (LW). Chicken meat production gen-
erates 4.6 ton CO2e ton LW�1, which is equivalent to 29% and 72% of
emissions generated by beef and pig meat production respectively
(Williams et al., 2006). Some emissions are directly related to the
meat yield (meat for human consumption,LW�1). Even if the
chicken industry has a better environmental performance
compared to other industries, it is necessary to develop more
sustainable systems, as in any food sector (Notarnicola et al., 2012).

Most studies focus on the farm stage (Baumgartner et al., 2008;
Leinonen et al., 2012; Pelletier, 2008). Only a few include the PPP
stage (da Silva et al., 2014; Gonz�alez-Garcia et al., 2014; Williams
et al., 2006) and the logistics and consumer-related activities
(Bengtsson and Seddon, 2013; Weidema et al., 2008).

The goal of this study is to assess the environmental impacts of
chicken meat production from cradle to PPP gate by coupling the
LCA methodology with simulation and artificial intelligence tech-
niques to overcome its limitations. Process simulation allows
quantifying inputs and outputs of the process according to both the
real system conditions and parameters not to create a black box
(complex processes modeled by using literature data). Monte Carlo
simulation makes possible to quantify and propagate variability
and uncertainty into the LCA results. The classical mass allocation
method and alternative impact allocation procedures were
compared. The results obtained showed similar results. Finally, a
multiobjective optimization model was used to generate alterna-
tives of optimal process parameters that reduce environmental
impacts in the system per functional unit (FU). Themodel considers
three criteria based on technical, economic and environmental
aspects, and a Genetic Algorithm (GA) is used to generate optimal
alternatives. GA solves the problem caused by both the non-linear
nature of a system and the multiple criteria assessment. The GA
results were evaluated through a multi-criteria decision-making
(MCDM) method to find the best solution.

The proposed approach was applied to a Mexican case study.
Mexico ranks seventh in poultry production and sixth in con-
sumption worldwide, being chicken the most consumed meat in
the country (34 kg,cap�1,year�1). In 2015, Mexico produced 3.20
Mton broiler meat, against 1.88 Mton of beef, and 1.32 Mton of pork
(USDA, 2016). Despite this, no study addresses LCA approach to this
industry.

Next section presents a review of benefits of coupling MC
simulation and GA to LCA methodology. Then, the LCA-based
methodology is described through the case study. Finally, specific
results of the case study are presented and compared with existing
works.

2. Literature review

2.1. LCA and Monte Carlo simulation

Huijbregts (1998) identified three types of uncertainty
(parameter uncertainty, model uncertainty, and uncertainty due to
choices) and variability (spatial variability, temporal variability, and

variability between objects). Because of their difficult to be repre-
sented by models, LCA studies do not take into account uncertainty
and variability. However, some authors have tried to include them
into models by using ranges in inputs variables (Basset-Mens et al.,
2006), probability distributions (Henriksson et al., 2012), or simu-
lation (Leinonen et al., 2012).

According to Geisler et al. (2005), variability and uncertainty can
be conveniently propagated into LCA results using MC simulation.
Bieda (2014) found that using MC simulation in LCA studies results
in more flexible models since probability distributions describe the
variables, a better understanding of the behavior of specific outputs
(products and emissions), and a better capacity to identify the most
representative variables of the model.

2.2. LCA and process simulation

Process simulation (PS) has been widely used in process design
to illuminate the black box. PS is used to faithfully represent oper-
ating conditions in a process to obtain better results for the LCI.

Therefore, process simulation is used either to overcome the
difficult to obtain LCI data or to implement changes without
affecting the performance of the real system.

Chemical, thermal and biological processes have used it with
very satisfactory results (Brunet et al., 2012; Leonzio, 2016; Morales
Mendoza et al., 2012; Morales Mendoza et al., 2014; Petchkaewkula
et al., 2016). The purpose is to inject PS results into LCA (Jacquemin
et al., 2012) to enhance the scope of its results.

2.3. LCA and optimization

The decision variables of a system can be evaluated and then
improved/optimized to reduce environmental impacts. However, it
is more useful for decision-makers when the optimization process
involves other aspects (e.g., economic and technical) at the same
time. This kind of problems needs to be solved by multiobjective
models. These techniques aid the optimization of economic in-
dicators such as net present value (NPV), costs, profit, and net
revenue coupled to environmental indicators (Amudha et al., 2015;
Gonz�alez-Garcia et al., 2014; Kostin et al., 2011, 2012; Liu et al.,
2014). Technical and social objectives can also be included, but
they need to be quantifiable.

Some studies focus on customer satisfaction (Nwe et al., 2010),
crop yield (Khoshnevisan et al., 2015), energy payback time (P�erez
et al., 2014) and the design of processes (Alexander et al., 2000;
Dietz et al., 2006) and entire supply chains (You et al., 2012).

GA can be very useful in this kind of problems due to its flexi-
bility to deal with both linear and non-linear functions, the
advantage it has to handle multi-objective situations, and its
capability to avoid local minimums/maximums.

Techniques mentioned above look to increase the LCA's scope
and overcome its limitations, such as those identified by Ekvall et al.
(2007): static models, environmental focus only, and use of linear
steady-state models, while most systems are non-linear.

Table 1 summarizes the main features of these techniques when
used in addition to LCA and compares them. Table 2 contains a
summary of some research where LCA is complemented with MC,
PS, GA, and other techniques. None of the studies mentioned in
Table 2 has implemented the techniques described in this section at
the same time.

2.4. LCA in chicken production

The application of LCA in poultry systems has not been explored
completely. Most studies only address the traditional LCA
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