#### Journal of Cleaner Production 176 (2018) 1078-1090



Contents lists available at ScienceDirect

## Journal of Cleaner Production



journal homepage: www.elsevier.com/locate/jclepro

## Influence of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge Membrane BioReactor plant



Giorgio Mannina <sup>a</sup>, George A. Ekama <sup>b</sup>, Marco Capodici <sup>a</sup>, Alida Cosenza <sup>a, \*</sup>, Daniele Di Trapani <sup>a</sup>, Hallvard Ødegaard <sup>c</sup>, Mark M.C. van Loosdrecht <sup>d</sup>

<sup>a</sup> Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy

<sup>b</sup> Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7700, Cape, South Africa

<sup>c</sup> NTNU - Norwegian University of Science and Technology, Department of Hydraulic and Environmental Engineering, 7491, Trondheim, Norway

<sup>d</sup> Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands

#### ARTICLE INFO

Article history: Available online 29 November 2017

Keywords: N<sub>2</sub>O-Emmisions WWTP Global warming Nitrogen removal C/N variation

#### ABSTRACT

In this study a University of Cape Town (UCT) Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) wastewater treatment plant was monitored in terms of nitrous oxide (N<sub>2</sub>O) emissions. The short term effect on the N<sub>2</sub>O emission due to the influent carbon-to-nitrogen (C/N) ratio variation (C/N ratios of 2, 5 and 10 gCOD/gN) was evaluated. Since in a previous study, the effect of the C/N ratio was studied in the same system without biofilm (UCT-MBR configuration) the main aim here was to investigate the role of biofilms on N<sub>2</sub>O emissions. Under all the investigated C/N ratios, the N<sub>2</sub>O fluxes and the average emission factors were lower than that of previous studies with no biofilm presence. The total average N<sub>2</sub>O emission was 0.5% of the influent nitrogen with biofilm (IFAS system) and 3.5% without biofilm. This result emphasizes the potential role of the biofilms in attenuating the N<sub>2</sub>O emission sepecially in the case of stress conditions (i.e., low C/N influent ratios). An increase of N<sub>2</sub>O fluxe from the anoxic reactor (till 28 mgN<sub>2</sub>O m<sup>-2</sup>h<sup>-1</sup>) occurred at the lowest influent C/N tested (2 gCOD/gN - phase III). At C/N equal to 2 gCOD/gN the anoxic reactor was the main source of N<sub>2</sub>O, contributing 45% of all produced N<sub>2</sub>O. This result was attributed to an incomplete denitrification caused by a lack of organic carbon and a slight increase of dissolved oxygen concentration.

© 2017 Elsevier Ltd. All rights reserved.

### 1. Introduction

During the last ten years, the interest towards greenhouse gas (GHG) emission from wastewater treatment plants (WWTPs) has increased considerably with the aim to design and operate plants that have the minimum environmental impact (Mannina et al., 2016a). In addition to the "traditional pollutants" such as organics compounds (indirectly measured by chemical oxygen demand - COD, biochemical oxygen demand - BOD<sub>5</sub>), nitrogen - N or phosphorus – P, WWTPs can also emit GHGs (i.e., carbon dioxide – CO<sub>2</sub>, methane – CH<sub>4</sub> and nitrous oxide – N<sub>2</sub>O). GHGs can be emitted as a direct consequence of the biological processes (Mannina et al., 2016a) or indirectly due to the power requirements (Papa et al., 2016). Among the GHG emitted from WWTPs, N<sub>2</sub>O has caused the greatest interest among scientist and researchers due to its high

global warming potential (GWP) (298 times higher than that of CO<sub>2</sub>) (IPCC et al., 2013). N<sub>2</sub>O from WWTPs is mainly produced by the biological nitrogen removal (BNR) processes through nitrification and subsequent denitrification both from autotrophic and heterotrophic bacteria (Kampschreur et al., 2009).

Ammonia oxidizing bacteria (AOB) have been identified as responsible of producing N<sub>2</sub>O due to: i. the reduction of NO<sub>2</sub> as terminal electron acceptor to N<sub>2</sub>O (AOB denitrification) (Kim et al., 2010); ii. the incomplete oxidation of hydroxylamine (NH<sub>2</sub>OH) to NO<sub>2</sub> (Law et al., 2012). The predominance of AOB pathway to the other has not yet been demonstrated (Pocquet et al., 2016).

WWTP operating factors (such as, dissolved oxygen, C/N ratio, sludge retention time – SRT and temperature) may strongly influence the N<sub>2</sub>O emission (Kampschreur et al., 2009). Stenström et al. (2014) have found that decreasing the oxygen concentration during nitrification lead to the increase of N<sub>2</sub>O emission during the denitrification; similar results were also found by Frison et al. (2015). Recently, Mannina et al. (2017a) reported the effect of the influent C/N ratio on N<sub>2</sub>O emissions from the same UCT- MBR pilot plant

<sup>\*</sup> Corresponding author. E-mail address: alida.cosenza@unipa.it (A. Cosenza).

| 107 | 9 |
|-----|---|
|-----|---|

|                                 |                                               | NH₄Cl<br>NH₄−N                   | ammonii<br>ammonii |
|---------------------------------|-----------------------------------------------|----------------------------------|--------------------|
| AOB                             | ammonia oxidizing bacteria                    | $NO_2 - N$                       |                    |
| ATU                             | Allylthiourea                                 | -                                | nitrate n          |
| b <sub>н</sub>                  | endogenous decay coefficient                  | NOB                              | Nitrite O          |
| BNR                             | biological nutrient removal                   | NO <sub>x</sub> -N <sub>in</sub> | influent           |
| BOD                             | biochemical oxygen demand                     |                                  | permeat            |
| BOD <sub>5</sub>                | biochemical oxygen demand in five days        | ODR                              | oxygen o           |
| СŰ                              | carbon                                        | ОНО                              | ordinary           |
| $C_3H_8O_3$                     | glycerol                                      | OP                               | ortho-P            |
| CAS                             | conventional activated sludge                 | OUR                              | Oxygen             |
| H <sub>3</sub> COO              | Na sodium acetate                             | Р                                | phospho            |
| CH₄                             | methane                                       | PAOs                             | phospha            |
| CIP                             | clean in place                                | PHA                              | poly-β-h           |
| $20_{2}$                        | carbon dioxide                                | P <sub>IN</sub>                  | influent           |
| COD                             | chemical oxygen demand                        | O <sub>4</sub> -P                | phospha            |
| COD <sub>in</sub>               | influent COD                                  | P <sub>OUT</sub>                 | permeat            |
| COD <sub>out</sub>              | permeate COD                                  | Qairsi                           | volumet            |
| COD <sub>SUP</sub>              | supernatant COD                               | SBR                              | sequenti           |
|                                 | total COD                                     | SNDPR                            | simultan           |
| D0                              | dissolved oxygen                              |                                  | phospho            |
| DPAOs                           | denitrifying phosphate accumulating organisms | SRT                              | Sludge R           |
| ECD                             | Electron capture detector                     | TKN                              | Total Kje          |
| FA                              | free ammonia                                  | TN                               | total niti         |
| GC                              | Gas Chromatograph                             | TP                               | total pho          |
| GHG                             | greenhouse gas                                | TSS                              | total sus          |
| GWP                             | global warming potential                      | UCT                              | Universit          |
| HRT                             | hydraulic retention time                      | VSS                              | volatile s         |
| FAS                             | Integrated Fixed Film Activated Sludge        | WWTPs                            | wastewa            |
| K <sub>2</sub> HPO <sub>4</sub> | dipotassium hydrogen phosphate                | $\eta P_{TOT}$                   | TP remo            |
| MBBR                            | moving bed biofilm bioreactors                | $\eta_{BIO}$                     | biologica          |
| MBR                             | Membrane BioReactor                           | η <sub>denit</sub>               | denitrifie         |
| N                               | nitrogen                                      | η <sub>nit</sub>                 | nitrificat         |
| N <sub>2</sub> O                | nitrous oxide                                 | ηP                               | OP remo            |
| Nassimilati                     | on assimilated nitrogen                       | η <sub>тот</sub>                 | total COI          |
|                                 | hydroxylamine                                 | $\eta N_{total}$                 | total niti         |
|                                 | influent nitrogen ammonia concentration       | μ <sub>H.max</sub>               | heterotro          |
|                                 | tpermeate nitrogen ammonia concentration      | ( II,IIIaX                       |                    |

| NH₄Cl              | ammonium chloride                                |
|--------------------|--------------------------------------------------|
|                    | ammonium nitrogen                                |
|                    | nitrite nitrogen                                 |
|                    | nitrate nitrogen                                 |
|                    | Nitrite Oxidizing Bacteria                       |
|                    | influent nitrite and nitrate concentration       |
|                    | t permeate nitrite and nitrate concentration     |
| ODR                | oxygen depletion reactor                         |
| ОНО                | ordinary heterotrophic organism                  |
| OP                 | ortho-P                                          |
| OUR                | Oxygen Uptake Rate                               |
| Р                  | phosphorus                                       |
| PAOs               | phosphate accumulating organisms                 |
| PHA                | poly-β-hydroxyalkanoates                         |
| P <sub>IN</sub>    | influent orthophosphate concentration            |
| O <sub>4</sub> -P  | phosphate                                        |
| Pout               | permeate orthophosphate concentration            |
| Qairi              | volumetric gas flux                              |
| SBR                | sequential batch rectors                         |
| SNDPR              | simultaneous nitrification, denitrification, and |
|                    | phosphorus removal                               |
| SRT                | Sludge Retention Time                            |
| TKN                | Total Kjeldahl Nitrogen                          |
| TN                 | total nitrogen                                   |
| TP                 | total phosphorus                                 |
| TSS                | total suspended solid                            |
| UCT                | University Cape Town                             |
| VSS                | volatile suspended solids                        |
| WWTPs              | wastewater treatment plants                      |
| ηP <sub>TOT</sub>  | TP removal efficiency                            |
| $\eta_{BIO}$       | biological COD removal efficiency                |
| η <sub>denit</sub> | denitrification efficiency                       |
| $\eta_{nit}$       | nitrification efficiency                         |
| ηP                 | OP removal efficiency                            |
| η <sub>тот</sub>   | total COD removal efficiency                     |
| $\eta N_{total}$   | total nitrogen removal efficiency                |
| $\mu_{H,max}$      | heterotrophic growth rate                        |
|                    |                                                  |

here discussed and, they found the highest  $N_2O$  emissions at the lowest investigated C/N ratio (5 gCOD/gN).

The variability of the influent features and of the used process configuration make the weight that each operating factor has on the total N<sub>2</sub>O emission unknown. Such a fact leads, as a consequence, to a huge variability of the N<sub>2</sub>O emission factors (with respect to the influent nitrogen load) available in the literature: 0.01-1.8% (Ahn et al., 2010; Rodriguez-Caballero et al., 2015), 0.036% (Aboobakar et al., 2013), 0.04-11% (Daelman et al., 2015).

Further, the existing difficulties in capturing and measuring the real overall  $N_2O$  produced from WWTPs (Marques et al., 2016) make data more case study specific and difficult to transfer to other systems (Mannina et al., 2016a).

Despite the knowledge on the N<sub>2</sub>O emission from WWTP has considerably increased, it has been mostly acquired on conventional activated sludge systems (CAS) (Todt and Dörsch, 2016). Therefore, current knowledge may not directly be transferred into innovative systems such as MBR or moving bed biofilm bioreactors (MBBR or hybrid biological systems such as Integrated Fixed Film Activated Sludge –IFAS) Mannina et al. (2011). MBR systems as well as IFAS systems are characterized by specific peculiarities that would strongly influence the N<sub>2</sub>O production/emission. For example, the intensive aeration for fouling mitigation in MBR can promote the N<sub>2</sub>O stripping. Therefore, further studies to better understand how the peculiarities of MBR or IFAS systems influence the N<sub>2</sub>O emissions are required.

With this regard, only few studies have been reported in literature. Todt and Dörsch (2016) found that the AOB denitrification and the incomplete heterotrophic denitrification as the main sources of N<sub>2</sub>O production in biofilm systems. These two N<sub>2</sub>O formation pathways occur mainly in hypoxic or anaerobic zone of biofilm, where the low O<sub>2</sub> concentration and the presence of NO<sub>2</sub> favor the N<sub>2</sub>O formation.

Lo et al. (2010) demonstrated that from the hybrid system the production of  $N_2O$  was significantly higher (21.2% of the influent nitrogen) than that of pure biofilm systems (0.5% of the influent nitrogen) and suspended biomass systems (4.2% of the influent nitrogen).

Very recently, Kinh et al. (2017) have demonstrated that membrane-aerated biofilm reactor (MABR) provides lower N<sub>2</sub>O emission than conventional biofilm reactor (CBR). Specifically, N<sub>2</sub>O emission factor was 0.0058  $\pm$  0.0005% in the MABR and 0.72  $\pm$  0.13% in the CBR.

Studies on the quantification of N<sub>2</sub>O from biofilm systems, such

Download English Version:

# https://daneshyari.com/en/article/8099499

Download Persian Version:

https://daneshyari.com/article/8099499

Daneshyari.com