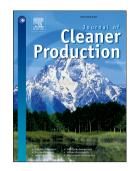
Accepted Manuscript

Comparing greenhouse gas emissions of precast in-situ and conventional construction methods

Yingbo Ji, Kaijian Li, Guiwen Liu, Asheem Shrestha, Jinxi Jing

PII: S0959-6526(16)31039-3

DOI: 10.1016/j.jclepro.2016.07.143


Reference: JCLP 7715

To appear in: Journal of Cleaner Production

Received Date: 11 May 2016
Revised Date: 2 July 2016
Accepted Date: 22 July 2016

Please cite this article as: Ji Y, Li K, Liu G, Shrestha A, Jing J, Comparing greenhouse gas emissions of precast in-situ and conventional construction methods, *Journal of Cleaner Production* (2016), doi: 10.1016/j.jclepro.2016.07.143.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Page count: 27 Word count: 6396
2	Comparing greenhouse gas emissions of precast in-situ and conventional
3	construction methods
4	Yingbo Ji, Ph.D. ¹ , Kaijian Li ^{2*} , Guiwen Liu, Ph.D. ³ , Asheem Shrestha, Ph.D. ⁴ , Jinxi Jing ⁵
5	1 Yingbo Ji, Associate Professor, School of Civil Engineering, North China University of Technology, Beijing
6	100144, China; E mail: yingboji@126.com
7	2* Kaijian Li, PhD Candidate, Faculty of Construction Management and Real Estate, Chongqing University,
8	Chongqing 40045, China. Email: likaijian@cqu.edu.cn (* Corresponding author)
9	3 Guiwen Liu, Professor, Faculty of Construction Management and Real Estate, Chongqing University,
10	Chongqing 400045, China; E mail: gwliu@cqu.edu.cn
11	4 Asheem Shrestha, Assistant Professor, Faculty of Construction Management and Real Estate, Chongqing
12	University, Chongqing 400045, China; E mail: asheemsh@hotmail.com
13	5 Jinxi Jing, Master Degree Candidate, Faculty of Construction Management and Real Estate, Chongqing
14	University, Chongqing 40045, China. Email: jinxi.jing@yahoo.com
15	
16	Abstract
17	Precast in-situ construction is gaining popularity among construction practitioners in China for its
18	efficient system and its ability to reduce construction waste. However, there has been little to no
19	empirical evidence that elucidates the greenhouse gas (GHG) emissions from this method. In an effort
20	to address this knowledge gap, this paper establishes a systems boundary for the measurement of GHG
21	emissions for precast in-situ construction. Employing a quantitative model, the GHG emissions of
22	precast in-situ is determined and compared with conventional construction method. Results show that
23	the precast in-situ construction produces less GHG emissions than the conventional method. Embodied
24	GHG of building materials is found to be the main GHG emitter in both precast in-situ and conventional
25	construction methods. Furthermore, four factors are identified that positively contributes towards
26	reduced emissions: (i) embodied GHG emissions of building materials, (ii) transportation of building
27	materials, (iii) resource consumption of equipment and techniques and (iv) transportation of waste and

Download English Version:

https://daneshyari.com/en/article/8099659

Download Persian Version:

https://daneshyari.com/article/8099659

<u>Daneshyari.com</u>