Accepted Manuscript

The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk production

P.F. Mostert, C.E. van Middelaar, E.A.M. Bokkers, I.J.M. de Boer

PII: S0959-6526(17)32311-9

DOI: 10.1016/j.jclepro.2017.10.019

Reference: JCLP 10811

To appear in: Journal of Cleaner Production

Received Date: 22 March 2017

Revised Date: 2 October 2017

Accepted Date: 3 October 2017

Please cite this article as: Mostert PF, van Middelaar CE, Bokkers EAM, de Boer IJM, The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk production, *Journal of Cleaner Production* (2017), doi: 10.1016/j.jclepro.2017.10.019.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk		
2	production		
3	P.F. Mostert ^a , C.E. van Middelaar ^a , E.A.M. Bokkers ^a , and I.J.M. de Boer ^a .		
4	^a Animal Production Systems group, Wageningen University, PO Box 338, 6700 AH		
5	Wageningen, the Netherlands		
6	Corresponding author: P.F. Mostert, PO Box 338, 6700 AH Wageningen, the Netherlands,		
7	+31(0)317484626, pim.mostert@wur.nl		
8			
9	Abstract		
10	The dairy sector is an important contributor to greenhouse gas (GHG) emissions. Subclinical		
11	ketosis (SCK), a metabolic disorder in dairy cows, increases the risk of other diseases. SCK		
12	can increase GHG emissions per kg of milk produced by reducing production efficiency of		
13	dairy herds. With an expected increase in milk consumption, and potential new policies to		
14	reduce GHG emissions from agriculture, producing efficiently and reducing GHG emissions		
15	becomes increasingly important. The objective of this study was to estimate the impact of		
16	SCK and related diseases (i.e. mastitis, metritis, displaced abomasum, lameness, and clinical		
17	ketosis) on GHG emissions of milk production. To this end, a dynamic stochastic simulation		
18	model was developed and combined with life cycle assessment (LCA). This model simulates		

CI		Calving interval
CO ₂ -e		Carbon dioxide equivalents
DA		Displaced abomasum
DM		Dry matter
FPCM	X.	Fat-and-protein-corrected milk
GHG		Greenhouse gas
LCA		Life cycle assessment
LU		Land use
Luc		Land use change
LULuc		Land use and land use change
NEB		Negative energy balance
Р		Probability
RR		Risk ratio
SCK		Subclinical ketosis

Download English Version:

https://daneshyari.com/en/article/8100256

Download Persian Version:

https://daneshyari.com/article/8100256

Daneshyari.com