#### Journal of Cleaner Production 135 (2016) 1065-1084

Contents lists available at ScienceDirect

### Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

## Designing integrated local production systems: A study on the foodenergy-water nexus

Melissa Yuling Leung Pah Hang <sup>a</sup>, Elias Martinez-Hernandez <sup>b</sup>, Matthew Leach <sup>a</sup>, Aidong Yang <sup>b, \*</sup>

<sup>a</sup> Centre for Environmental Strategy, University of Surrey, Guildford, GU2 7XH, UK <sup>b</sup> Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK

### A R T I C L E I N F O

Article history: Received 19 January 2016 Received in revised form 30 June 2016 Accepted 30 June 2016 Available online 5 July 2016

Keywords: Local production system Mathematical optimisation Resource consumption Exergy Food-energy-water nexus

#### ABSTRACT

Centralised production of essential products and services based on fossil fuels and large scale distribution infrastructures has contributed to a plethora of issues such as deterioration of ecosystems, socialeconomic injustice and depletion of resources. The establishment of local production systems that deliver various products for local consumption (e.g. food, energy and water) by making the best use of locally available renewable resources can potentially alleviate unsustainable resource consumption. The main objective of this work is to develop process systems engineering tools combined with the concept of resource accounting using exergy for the design of such local production systems. A general design framework comprising an optional preliminary design stage followed by a simultaneous design stage based on mathematical optimisation is proposed. The preliminary design stage considers each supply subsystem individually and allows insights into the potential interactions between them. The simultaneous design stage yields an optimal design of the local production system and has the capacity to include all design integration possibilities between the subsystems and generate a truly integrated design solution. The proposed methodology, which reflects generalised principles for designing local production systems, has been illustrated through a case study on the integrated design of the foodenergy-water nexus for a designated eco-town in UK. It demonstrates the advantages of an integrated design of a system making use of local resources to meet its demands over a system relying on centralised supplies and a design without considering integration opportunities between subsystems. © 2016 Elsevier Ltd. All rights reserved.

#### 1. Introduction

With the advent of industrialisation, the supply of energy and materials to meet human needs has been driven primarily by centralised production, harnessing economies of scale, based on fossil fuels and large scale distribution infrastructures. However, continuation of this mode of production coupled with growing population has led to a range of issues such as climate change, energy supply insecurity, deterioration of ecosystems and depletion of resources. Local production systems have been regarded as one possible pathway towards sustainability (Royal Academy of Engineering, 2011). Though the challenges are global, they have local impacts and may affect each local system differently. This calls for the engineering of human-made systems with a focus on the

\* Corresponding author. *E-mail address:* aidong.yang@eng.ox.ac.uk (A. Yang). new design tools to allow decision makers to explore the roles of local details such as the significance of local resource use and the opportunities for interactions between co-located subsystems. A local production system is defined as a network of heterogeneous processes, integrated in a synergistic manner to achieve a high degree of resource efficiency, potentially leading to improved

rational use of locally available resources. Such systems require

economic viability while preserving the ecosystem (Martinez-Hernandez et al., 2016). It considers all types of production processes that can occur at a local scale for the production of products (e.g. food) and/or services (e.g. heat) to satisfy local demands. While these processes differ in technical natures, they share the following characteristics desirable from sustainability perspectives; it is precisely this set of common characteristics that is to be explored by this work. First of all, these systems offer the possibility to use renewable resources which can be captured or produced locally to meet demands of the local population. They also have the





CrossMark

| Nomenclature              |                                                          | $y_{c,s}$           | Yield of crop c per season s                                           |
|---------------------------|----------------------------------------------------------|---------------------|------------------------------------------------------------------------|
|                           |                                                          | Уг                  | Yield of livestock <i>l</i>                                            |
| Sets                      |                                                          | RA <sub>ag</sub>    | Amount of residues or manure per unit of agricultural commodity, kg/kg |
| $a \in A$                 | Water sources                                            | Ref                 | COD removal efficiency of treatment plant, %                           |
| $ag \in AC$               | G Agricultural commodities                               | RWs                 | Amount of rainwater collected in season s, t                           |
| $b \in B$                 | Water sinks                                              | SEDWA               | Electricity demand for treating unit wastewater, MJ/kg                 |
| $b' \in B'$               | Regenerator water sinks                                  | SHD <sup>WA</sup>   | Heat demand for treating unit wastewater, MJ/kg                        |
| $c \in C$                 | Crops                                                    | SL                  | Number of years of service life of storage facility, y                 |
| $d \in D$                 | Food types                                               | t                   | Time period over which heat is transferred, v                          |
| $i \in I$                 | Nutrient sources                                         | $T_{\pi}^{in}$      | Inlet temperature of heat source $x'$ before heat                      |
| $i' \in I'$               | Imported nutrient sources                                | X                   | exchange, °C                                                           |
| $i'' \in I''$             | Locally produced nutrient sources                        | Tout                | Outlet temperature of heat source $x'$ after heat                      |
| $i \in I$                 | Food sinks                                               | X                   | exchange. °C                                                           |
| $l \in L$                 | Livestock                                                | Tin                 | Temperature of heat sink v before heat exchange. $^{\circ}C$           |
| $0 \in 0$                 | Operating flows                                          | Tout                | Temperature of heat sink v after heat exchange, °C                     |
| $r \in \mathbb{R}$        | Energy raw material                                      | TD                  | Minimum temperature difference. °C                                     |
| $s \in S$                 | Seasons                                                  | TE                  | Specific cumulative exergy of operating resources per                  |
| $x \in X$                 | Energy sources                                           | 12                  | unit accumulated crop MI/kg                                            |
| $v \in \mathbf{Y}$        | Energy sources                                           | UTD                 | Upper bound for temperature difference °C                              |
| <i>y</i> = 1              | Lifergy sinks                                            | Wdem                | Water demand of sink $h$ in season s $t$                               |
| Paramet                   | ers                                                      | WC                  | Amount of water required for agriculture per unit food                 |
| char                      | Conversion factor from crop c to food d                  | wea                 | d kø/kø                                                                |
| cfu                       | Conversion factor from livestock $l$ to food $d$         | WF                  | Amount of water required per energy produced kg/MI                     |
| cod                       | Maximum allowable COD of water sink $h \neq$ COD/kg      | WFG                 | Amount of wastewater generated per energy                              |
| eou <sub>D</sub><br>e.:   | Specific cumulative exergy of operating flows o to       | 1120                | produced kg/MI                                                         |
| COJ                       | nutrient sink $i$ MI/kg or MI/MI                         | WGP.                | Amount of wastewater generated per unit food $d \log kg$               |
| ρ                         | Specific cumulative every of raw material $r$ for energy |                     | Amount of water required for industrial processing per                 |
| C <sub>F</sub>            | production MI/kg                                         | VVI (J              | unit food d kg/kg                                                      |
| PCW                       | Specific cumulative every of chemicals per unit          | nel                 | Flectrical efficiency of source x for raw material r                   |
| L                         | wastewater MI/kg                                         | nhe                 | Heat efficiency of source $x$ for raw material $r$                     |
| pelw                      | Specific cumulative every of electricity per unit        | Πx,r                | freat enterency of source x for faw material r                         |
| L                         | wastewater MI/kg                                         | Variable            | 20                                                                     |
| ehew                      | Specific cumulative exergy of heat per unit wastewater   | A                   | Amount of agricultural commodity <i>ag</i> produced during             |
| C                         | MI/kg                                                    | r ug,s              | season s t                                                             |
| pie                       | Specific cumulative every of imported energy MI/MI       | А                   | Amount of crop c locally produced in season s t                        |
| eiel                      | Specific cumulative every of total imported flows for    | AC                  | Amount of crop c accumulated at season s, t                            |
| C                         | producing electricity MI/kg                              | AC                  | Amount of crop c accumulated from season $s_{-1}$ t                    |
| eihe                      | Specific cumulative every of total imported flows for    | $AR_{c,s-1}$        | Amount of rainwater accumulated from season $s=1, t$                   |
| C                         | producing heat MI/kg                                     | AW/                 | Amount of rainwater available for consumption in                       |
| Pel                       | Specific cumulative every for producing electricity      | 11005               | season s t                                                             |
| $c_{\chi}$                | from source v MI/kg                                      | CA                  | Capital every resources for storage of crop c. CI                      |
| he                        | Specific cumulative every for producing heat from        | $CA^{rw}$           | Total capital every resources for rainwater storage CI                 |
| $c_{\chi}$                | source x $MI/k\sigma$                                    | codu                | COD of treated wastewater from treatment plant sink                    |
| eimp                      | Specific cumulative every of imported food $d$ MI/kg     | cou <sub>b',s</sub> | b' in season s g COD/kg                                                |
| eimp                      | Specific cumulative exergy of imported nutrient flows    | CP.v. a             | Heat canacity flow rate of source $x'$ for season s CI/                |
| ° <sub>i',j</sub>         | i' to nutrient sink i MI/kg                              | CI X',S             | season                                                                 |
| <b>F</b> dem              | Flectricity demand at sink $v$ per season s. Cl          | CS                  | Heat canacity flow rate of sink $v$ for season s. Cl/season            |
| Ey,s<br>FLD               | Electricity demand per unit food d MI/kg                 | E F                 | Amount of electricity from source x exported to grid in                |
| ELD a<br>Fdem             | Demand of food $d$ in season s t                         | ±x,gria,s           | season s CI                                                            |
| d,s<br>FC                 | Nominal size of storage facility t                       | F                   | Amount of electricity from source $x$ to sink $y$ in season            |
| н.,                       | Harvest recovery rate of locally produced nutrient       | L <sub>X,Y,S</sub>  | s CI                                                                   |
| 11 <sub>1</sub> ″         | sources i"                                               | FID <sup>FD</sup>   | Total electricity demand of food processes in season s                 |
| Hdem                      | Heat demand at sink $v$ per season s. Cl                 | LLDS                | CI                                                                     |
| H <sup>Max</sup>          | Maximum heat load in waste heat CI                       | FLDWA               | Total electricity demand of water processes in season s                |
|                           | Heat demand per unit food $d$ MI/kg                      | LLDS                | CI                                                                     |
| I                         | Land use per unit raw material r from source x ha/MI     | Fcrop               | Amount of locally produced food <i>d</i> from crop in season           |
| -r,x<br>I <sup>agri</sup> | Total amount of agricultural land available ha           | * d,s               | s t                                                                    |
| $L^{en}$                  | Land available for energy production ha                  | F <sup>imp</sup>    | Amount of imported food $d$ in season s t                              |
| $M^{Av}$                  | Availability of raw material r in season s MI            | d s<br>Flive        | Amount of locally produced food $d$ from livestock in                  |
| N <sup>dem</sup>          | Demand of nutrient sink <i>i</i> in season s ko          | * d,s               | season s t                                                             |
| nC:"                      | Nutrient content of locally produced nutrient sources    | Flocal              | Amount of locally produced food $d$ in season s t                      |
|                           | <i>i</i> <sup>"</sup> . kg N                             | t d,s<br>Hy         | Amount of heat from source $x$ to sink $y$ in season $s$ . Cl          |
|                           | .,                                                       | • • x,y,s           | . mount of near from source w to shirk y in season 3, dj               |

Download English Version:

# https://daneshyari.com/en/article/8101386

Download Persian Version:

## https://daneshyari.com/article/8101386

Daneshyari.com