
International Journal of Rock Mechanics & Mining Sciences 43 (2006) 408–425

Applications of numerical limit analysis (NLA) to stability problems of
rock and soil masses

A.F. Duranda, E.A. Vargas Jr.b,�, L.E. Vazc

aCivil Engineering Laboratory, State University of Northern Rio de Janeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes,

CEP 28013-602, Brazil
bDepartment of Civil Engineering, Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, Gávea,
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Abstract

This work presents formulations and results obtained with computer implementations of an alternative to the more standard

techniques for the determination of the state of collapse of geotechnical structures in rock or soil masses. Examples of normally available

and used techniques for those purposes are limit equilibrium based procedures and elasto-plastic finite elements. As an alternative to

these techniques, the present paper describes Numerical Limit Analysis (NLA). The fundamentals for limit analysis, summarized in the

so-called bound theorems, have been known for decades. Analytical solutions obtained with limit analysis are however limited in scope

and are seldom used in the engineering practice. NLA on the other hand, by solving the limit analysis equations through numerical

methods are general and applicable to a wide range of problems. The paper presents a discussion on available alternatives for the

formulation of NLA specialized for the determination of collapse load factors of geotechnical structures in/on rock (fractured or not)

and soil masses. Rock masses in particular are modelled as standard continua, Cosserat equivalent continua and true discontinua formed

by discrete blocks. Finite elements are used for the solution of NLA equations of standard continua and Cosserat continua. The paper

presents derivation of the pertinent equations, the numerical formulations used and details of their numerical implementation in

computer programs. Attempt was made to validate all the implementations through existing analytical solutions. The obtained results

permit to state that NLA is a promising and very often advantageous numerical technique to establish collapse states of geotechnical

structures in rock and soil masses.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the design stage of a number of geotechnical problems
such as the ones found in bearing capacity of foundations,
retaining structures, slope stability and underground
excavations, a primary objective consists in the determina-
tion of a collapse load, a maximum load the geotechnical
system is able to support before it collapses. These loads
are generally determined by limit equilibrium methods or
elasto-plastic finite element analyses. In the present work,

use is made of numerical limit analysis (NLA), an
alternative, often very advantageous technique in relation
to the ones described but in general seldom used in
practice. The paper presents a theoretical background of
limit analysis and possibilities of its numerical implementa-
tion. Main emphasis of the paper concerns applications of
the technique for both continuum and discontinuum
problems. In the latter case, more relevant to Rock
Mechanics situations, the medium can be represented both
by discrete blocks (true discontinua) and by Cosserat-type
continua. Initially, the paper formulates the general limit
analysis problem. Subsequently, it describes its specializa-
tion and numerical implementation for analysis of
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standard continuua, Cosserat continua and true disconti-
nuua (discrete blocks) problems. Application and valida-
tion examples are presented and discussed. Finally, a
general discussion on the possibilities of the use of NLA in
practical problems is presented.

2. Fundamentals of limit analysis

The interest in the study of collapse of engineering
structures began with Coulomb in 1773 [1]. Coulomb
developed plasticity concepts applied to soils as well as the
concept of a plastic limit as applied to retaining structures.
Later, in 1857, Rankine introduced the concept of slip lines
in order to interpret the plastic equilibrium of soils. Based
in such studies, the concept of limit analysis evolved, more
or less heuristically, until approximately 1950 in different
areas of engineering. In 1952, Drucker and Prager, in a
study of plastic materials obeying Mohr–Coulomb’s yield
criterion [2,3], defined bounds (upper and lower) for the
collapse load.

The collapse load in stability problems can be obtained
in an independent way through the application of the
theorems of the limit analysis (upper bound or lower
bound). When the collapse load is obtained from an
established statically admissible stress field, it is considered
to be a lower bound to the true collapse load. In the same
way, if the collapse load is obtained by means of an
established kinematically compatible failure mechanism, it
is considered to be an upper bound to the true collapse
load. In practice, the establishment of kinematically
admissible failure mechanisms is in general easier when
compared with the establishment of statically admissible
stress fields. In this way, various analytical solutions are
available today using various forms of simplified collapse
mechanisms [4].

2.1. Limit analysis theorems

The application of the limit analysis theorems is possible
for solid materials that present the following properties [1]:

1. The plastic behavior of the material is perfect or ideally
plastic, i.e., the yield surface is fixed in the stress space.

2. The yield surface is convex and the rates of plastic
deformation are obtained from a yield function through
an associated flow rule.

3. Changes in the geometry of the body are considered
insignificant when the loads reach the limit load state.
The principle of virtual work can therefore be applied.

Central in the theory of limit analysis is the determination
of a collapse load factor, roughly speaking an analogous
measure to the factor of safety in limit equilibrium. In the
lower bound formulation, the collapse load factor, or (or
simply) the load factor can be defined as a multiplying
factor (a scalar) by which the external loads have to be
multiplied in order that the structural system reaches

collapse. Similarly, in the upper bound formulation, the
load factor is defined as a multiplying factor (also a scalar)
by which the external work (work performed by the
external loads) has to be multiplied in order that the
structural system reaches collapse. Formally, the lower
bound (or static) and the upper bound (kinematic)
theorems can be stated as in the following:

Lower bound theorem (static theorem). A load factor ls
that corresponds to a statically admissible stress field, one
that satisfies (a) equilibrium equations in the domain, (b)
equilibrium equations on the boundary and (c) nowhere in
the domain the yield function is violated, will not exceed
the true load factor of the structure.

Upper bound theorem (kinematic theorem). The kinematic
load factor lk as determined by equating the rate of
external work with the rate of internal dissipation of energy
along a kinematically admissible velocity field (_u), one that
satisfies (a) the velocity boundary condition and (b) the
compatibility relations between strain rates and velocity, is
not less than the true collapse load factor.
According to the principles of continuum mechanics, the

statements contained in both upper and lower bound
theorems can be stated mathematically by the following
equations:
Given

f in O ðbody forcesÞ;

t on Gt ðboundary forces; tractionsÞ;

Find l, r, _u, _e, e, _c such that the following conditions are
satisfied:
Static equilibrium:

rTr ¼ lf in O;

rg ¼ lt on Gt;
(1)

Yield criterion:

f ðrÞp0 in O, (2)

Kinematic consistency:

_e ¼ r _u in O;

_u ¼ 0 on Gu;
(3)

Flow rule:

_ep ¼ _g
qf
qs

_g ¼ 0 if f ðrÞo0;

_gX0 if f ðrÞ ¼ 0;
(4)

where f is the vector of body forces, t the boundary forces,
tractions, g the unit vector normal to surface Gt, r the
stress field, _u the velocity (displacement rate) field, _ep the
plastic strain rates field, l the collapse load factor and _g the
plastification factor.
The complete solution of the problem of establishing

collapse of a system considering both statically and
kinematically admissible fields must use Eqs. (1)–(4). The
problem however can be solved by considering either a
statically admissible field or a kinematically admissible
field. When the collapse load of the system is obtained
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