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a b s t r a c t

This study aims to develop a new field-based approach that can estimate patterns of groundwater
pollution sensitivity using data mining algorithms. Hydrogeological and pollution sensitivity data were
collected from the Woosan Industrial Complex, Korea, which is a site contaminated by trichloroethylene
(TCE). The proposed data mining algorithm procedure uses seven hydrogeological properties as input
variables: depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, and
hydraulic conductivity. The observed TCE sensitivity was used as the target data. Initially, four data
mining algorithms artificial neural network (ANN), decision tree (DT), case-based reasoning (CBR), and
multinomial logistic regression (MLR) were tested. We found that the DT-based data mining and rule
induction method shows better prediction accuracy and consistency than the other methods. We also
used the ordinal pairwise partitioning (OPP) algorithm to improve the accuracy and consistency of the DT
model. A classification and regression tree (CART) analysis of the OPP-DT model indicated that the net
recharge (R), soil media (S), and aquifer media (A) were the major hydrogeological factors that influence
groundwater sensitivity to TCE at the site. The results of this study demonstrate that the proposed model
can provide more accurate and consistent estimates of groundwater vulnerability to TCE compared to the
existing models.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The intensive industrial use of chlorinated solvents, such as
trichloroethylene (TCE), has caused these chemicals to be the most
frequently detected type of groundwater contamination (USEPA,
2003; Rivett et al., 2014). TCE is highly carcinogenic to animals
(USEPA, 2005), and its presence in groundwater is a substantial and
considerable concern to human health (USEPA, 2003, 2005, 2006).
Because TCE is a non-aqueous phase liquid (NAPL) with a density
heavier than water, its introduction to the subsurface environment
may result in the presence of persistent NAPL residuals in the un-
saturated zone or weathered/fractured rocks and may cause verti-
cal spreading of the groundwater contamination plume (Jackson,
1998; Chambers et al., 2004; Rivett et al., 2014). For long-term
contaminated sites, the locations of NAPL residuals are generally

difficult to determine. Because of the complex and problematic
nature of TCE groundwater contamination, the remediation of
long-term TCE-contaminated groundwater in a weathered/frac-
tured rock environment is regarded as one of the most difficult
remedial tasks.

Groundwater TCE contamination in the Woosan Industrial
Complex in Wonju (Gangwon Province, South Korea) is a model
case of long-term TCE-contaminated groundwater in a weather/
fractured rock environment (EMC, 2003; Yang et al., 2003; KECO,
2008; Baek and Lee, 2011; Yang et al., 2012). In 1995, a significant
amount of TCE NAPL was accidentally released into the subsurface
environment at a location on the site. In the early phase, the
groundwater was contaminated with high levels of TCE (unde-
tected to 10 mg/L) that exceed the Korean Groundwater Quality
Standard (TCE < 0.03 mg/L). After pump-and-treatment methods
were used in 2003, the groundwater appeared to be clean. How-
ever, since 2006, TCE has re-appeared in the groundwater (KECO,
2008; Baek and Lee, 2011; Yang et al., 2012). Recent field studies
suggest that the re-appearance of TCE in groundwater might be
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attributable to the presence of TCE NAPL residuals at the site (KECO,
2008; Baek and Lee, 2011; Yang et al., 2012; Rivett et al., 2014).
Unidentified locations of multiple TCE NAPL residuals and hydro-
geological complexity and heterogeneity in long-term TCE-
contaminated sites may impair decision making with respect to
planning groundwater protection and remediation (Rivett et al.,
2012).

The estimation of groundwater pollution vulnerability (or
sensitivity) is an important factor when prioritizing the planning of
groundwater conservation and contaminant remediation actions
(Gogu and Dassargues, 2000). Theoretically, groundwater vulner-
ability to a contaminant can be directly measured via the field
observation of changes in contaminant concentration. However,
such direct measurement is not practical due to its relatively high
cost. Instead, index models and/or deterministic process-based
models are generally used to estimate groundwater contamina-
tion sensitivity based on the available hydrogeological information
of a site and/or the chemical and source characteristics of the
groundwater contaminants (Aller et al., 1987; Dixon, 2005). In the
Woosan Industrial Complex case study, the data on the temporal
and spatial distributions of groundwater TCE concentrations were
insufficient for deterministic process-based modeling (EMC, 2003;
KECO, 2008; Baek and Lee, 2011), and model parameters for sorp-
tion, advection, and bulk density were not independently
measured. These limitationsmake it difficult to use a process-based
model to estimate the groundwater contamination sensitivity of
the site. This difficulty is also generally true for other groundwater
contamination field studies. In fact, only a very limited number of
studies have completed detailed field characterizations to examine
the temporal/spatial distribution of TCE contaminants near a
localized source zone (Yang et al., 2012; Rivett et al., 2014). As an
alternative, the DRASTIC model was developed by the U.S. Envi-
ronmental Protection Agency (EPA) to evaluate the groundwater
contamination potential for the entire United States (Aller et al.,
1987). This model is based on the concept of the hydrogeological
setting, which is defined as a composite description of all the major
geologic and hydrologic factors that affect and control the
groundwater movement into, through and out of an area (Aller
et al., 1987). The acronym represents seven hydrogeological pa-
rameters taken into consideration in the evaluation procedure, as
noted in Table 1. Each DRASTIC parameter is evaluated with respect
to the others in order to determine the relative importance of each

and is then assigned a relativeweight, ranging from1 to 5. Themost
significant parameters are given a weight of 5, while the least sig-
nificant receive a weight of 1. The DRASTIC Index is then computed
by applying a linear combination of all factors according to the
following equation:

DRASTIC Index ¼ DrDwþ RrRwþ ArAwþ SrSwþ TrTw

þ IrIwþ CrCw

where the subscripts r and w are the corresponding ratings and
weights, respectively.

The DRASTIC model (a representative index model [Aller et al.,
1987]) was developed for hydrogeologically simple North Amer-
ican aquifers and may not be suitable for the complex and het-
erogeneous hydrogeological characteristics of the Woosan
Industrial Complex site. Recently, data mining and rule induction
approaches are frequently used to predict previously unknown
events using already-available information. Data mining is poten-
tially applicable in groundwater contaminant sensitivity analyses
based on available hydrogeological information (Fijani et al., 2013;
Pacheco et al., 2015). Decision Tree (DT)-based rule induction may
be a suitable data mining option for predicting groundwater
contamination sensitivity because it can be feasibly applied when
only a small size of data are available, when sufficient knowledge of
cause-and-effect relationships is lacking, and when complex
nonlinear relationships exist in the available dataset (Singh and
Datta, 2007; Kim et al., 2011; Ahn et al., 2012). In addition, rule
induction that involves training with the relationships between
measured independent and dependent variables can be used in
identifying key independent variables influencing dependent var-
iable values and in predicting previously unmeasured dependent
variable values using their corresponding independent variable
values (Breiman et al., 1984; Berry and Linoff, 2004). The suggested
applicability of DT and rule induction in groundwater contamina-
tion sensitivity has yet to be evaluated.

In this study, the research objectives were (i) to evaluate the
validity of use of DT and rule induction in predicting groundwater
TCE sensitivity using hydrogeological input variables for a TCE-
contaminated site and (ii) to develop a method for identifying
key hydrogeological input variables influencing the groundwater
TCE sensitivity of a study site. Using the results from the second

Table 1
Summary of TCE concentrations and their corresponding hydrogeological properties at the study site.

(a) Target variable (N ¼ 114)

Variables Unit Mean Max Min Std. Dev.

TCE mg/L 0.14 3.50 0 0.81

(b) Input variables (N ¼ 114)

Variables Weight Unit Classified compositions Mean Max. Min. Std. Dev.

D(Depth to water) 5 m Continuous numeric variables 6.54 13.65 2.04 2.43
R(Net recharge) 4 % 7.30 12.85 2.17 3.18
T(Topography) 1 % 1.55 5.00 0.50 1.52
C(Hydraulic conductivity) 3 cm/sec 3.90 � 10�3 6.06 � 10�2 5.30 � 10�4 0.22

Total composition (%)
A(Aquifer media) 3 NAa Weathered Metamorphic/Igneous 50.36

Coarse sand and silt 28.38
Sandstone 21.26

S(Soil media) 2 NAa Sand and Concrete 57.34
Sandy Loam 30.22
Silty Loam 12.44

I(Impact of the vadose zone) 5 NAa Sand and Gravel with significant Silt and Clay 30.00
Metamorphic/Igneous 47.54
Sand and Gravel 22.46

a Indicates non-available.
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