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Technical note

Fully coupled dual-porosity model for anisotropic formations
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1. Introduction

In recent decades, all petroleum reservoir problems
involve two basic elements: fluid and rock. We are
interested in two particular processes associated with them:
fluid flow and geo-mechanics. Fluid flow is essential in a
petroleum reservoir study. Geo-mechanics is believed to be
important in several petroleum-engineering activities such
as drilling, borehole stability, hydraulic fracturing and
production-induced compaction and subsidence.

As we know, the production from naturally fractured
reservoirs has a great potential worldwide, and many
profitable reservoirs are naturally fractured. For naturally
fractured reservoirs, economical petroleum production
relies on the fracture permeability. The natural fractures
basically are the product of the evolving rock stress state.
Therefore, any disturbance of the stress field, such as due to
fluid production/injection, can affect the existing fractures
and the associated reservoir performance. A coupled fluid-
flow/ geo-mechanics model can provide a rational tool for
a better understanding and management of naturally
fractured reservoirs.

Naturally fractured reservoirs are often modeled by the
dual-porosity type of concept developed by Barenblatt et
al. [1] and Warren and Root [2]. Models incorporating
both Biot’s poroelastic theory [3] and Barrenblatt’s dual-
porosity concept have been studied by several authors. The
models they have established can be classified into two
types, based on the approach taken.

One approach is based on the mixture theory, and was
adopted by Wilson and Aifantis [4], Beskos and Aifantis
[5], Bai et al. [6], and Berryman and Wang [7]. The resulting

formulations have two related features: the first is that all
the fluid-flow equations in a ‘‘mixture’’ have the same
functional form as that of a single-porosity if the fluid
exchange term is dropped; and the second is that
phenomenological coefficients are proposed first, and their
physical interpretations are deduced after the completion
of the formulation. The first point implies that the stress-
dependent rock properties in one continuum are indepen-
dent of the other mixing continua. This in turn may cause
difficulty for the later physical interpretation (i.e., the
second one) and even inconsistency with the geo-mechan-
ical equations adopted.
The other approach follows the route of conventional

fluid-flow modeling. Coupling of geo-mechanics is identi-
fied through stress-dependent rock properties and during
the development process. Interpretation of the stress-
dependent properties is therefore critical to achieving a
proper coupling. This approach was adopted by Duguid
and Lee [8], Valliappan and Khalili-Naghadeh [9], Khalili-
Naghadeh and Valliappan [10], Chen et al. [11], and Li
et al. [12].
In the model of Duguid and Lee [8], an incompressible

solid was assumed. Also, no explicit rock compressibilities
(solid, pore, and bulk) appear in their fluid-flow equations.
Explicit rock compressibilities were considered by Valliap-
pan and Khalili-Naghadeh [9] (also [10]). But except for the
case of an incompressible solid, their two fluid pressure
equations do not collapse to the corresponding single-
porosity equation when the two fluid pressures reach
equilibrium (i.e., p1 ¼ p2). So it suggests that incompres-
sible solid phase had been implicitly adopted in their
general derivations which, however, contradicts their
intention and the presented equations.
The disadvantages identified in the above models are

resolved in the model of Li et al. [12]. Specifically,
(i) internal model consistency is maintained, and
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(ii) continuity between the single-porosity and dual-
porosity systems can be established smoothly.

The above models are all based on the assumption of
isotropy, whereas most rocks are characterized by aniso-
tropy of various degrees. Therefore, research on the
behavior of anisotropic dual-porosity media is of relevance
to oil and gas production. This paper is focused on the
development of the governing equations for a fully coupled
dual-porosity model for anisotropic rock formations.

2. Geo-mechanical model

The three basic principles of poroelastic theory are:
stress equilibrium, strain–displacement, and strain–stress-
pressure relations. Mathematically, these are the static-
equilibrium equation:

qsij

qxj

¼ 0, (1)

the strain–displacement relation:

eij ¼
1

2

qui

qxj

þ
quj

qxi

� �
(2)

and the effective stress principle and the stress–strain
constitutive relation for anisotropic double porous media
(strain–stress-pressure relations):

seij ¼ sij � a1ijp1 � a2ijp2 ¼ Cijklekl . (3)

In Eqs. (1)–(3), sij and ekl are the components of total
stress tensor and bulk strain tensor, respectively. We
should note that the sign convention here follows that in
which compressive stresses are positive. Additionally, ui is
the solid displacement vector, Cijkl denotes the elastic
moduli tensor, seij denotes the effective stress tensor, pn is
the nth fluid pressure, an

ij is the nth Biot coefficient tensor
(where the subscript n ¼ 1; 2 indicates the matrix-block and
fractures, respectively). For anisotropic double porous
media, an

ij has the following form [13]:

a1ij ¼ dij � CijklM
�
klmn,

a2ij ¼ CijklM
�
klmn � CijklM

s
klmn, ð4Þ

where dij is Kronecker’s delta (dij ¼ 1 for i ¼ j, dij ¼ 0 for
iaj), Mklmn is the elastic compliance tensor, the superscript
n stands for a porous media of without fractures, and the
subscripts s represents solid. Body forces and inertial
effects are neglected in Eq. (1). Small strains are implied in
Eq. (2). Substituting Eq. (3) into the equilibrium Eq. (1)
gives

1

2
Cijkl

q2uk

qxjqxl

þ
q2ul

qxjqxk

� �
¼ �a1ij

qp1

qxj

� a2ij
qp2

qxj

. (5)

Eq. (5) gives the geo-mechanical model for anisotropic
double porous media. Three simplifications of the geo-
mechanical model are discussed next.

2.1. Transverse isotropy

The geo-mechanical model Eq. (5) becomes more
tractable in the case of transverse isotropy. This is an
important type of anisotropy in geophysical applications,
since material properties are frequently isotropic in the
bedding plane but differ in the direction normal to this
plane. The anisotropy may be either structural (anisotropic
pore geometry), intrinsic (anisotropic solid material), or
both.
The tensor of elastic moduli for a transversely isotropic

material has the form [14]:

Cijkl ¼ mðdikdjl þ dildjkÞ þ ldijdkl þ aðdikhjhl þ djlhihk

þ dilhjhk þ djkhihlÞ þ bðdijhkhl þ dklhihjÞ þ ghihjhkhl ,

ð6Þ

where a, b, g, l, and m are constants, and hiis the directional
cosine of symmetry axis. For isotropic materials, a, band g
vanish; l and m are the Lamé constants. Introducing Eq. (6)
into Eq. (5) give

m
q2ui

qxjqxj

þ ahihk

q2uk

qxjqxj

þ ðmþ lÞ
q2uj

qxjxi

þ ðaþ bÞhihj

q2uk

qxjqxk

þ ahjhk

q2ui

qxjqxk
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q2uk
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qp1

qxj

� a2ij
qp2

qxj

, ð7Þ

where the Biot coefficient tensors for a transversely
isotropic material have the forms [13]

a1ij ¼ dijð1� AA�1 � CB�1Þ � ðBA�1 þDB�1Þhihj,

a2ij ¼ dijðAA�1 þ CB�1 � AAs
1 � CBs

1Þ

þ ðBA�1 þDB�1 � BAs
1 �DBs

1Þhihj ð8Þ

and

A ¼ 2mþ 3lþ b; B ¼ 4aþ 3bþ g,

C ¼ lþ b; D ¼ 2mþ 4aþ bþ g,

As
1 ¼ 2ms

1 þ 3ls1 þ bs1; Bs
1 ¼ 4as1 þ 3bs1 þ gs1,

A�1 ¼ 2m�1 þ 3l�1 þ b�1; B�1 ¼ 4a�1 þ 3b�1 þ g�1.

The compliance tensor has the similar format as the
above elastic modulus tensor, with compliance coefficients
m1; l1; a1;b1and g1, which can be expressed in terms of the
moduli m; l; a;band g.

2.2. Structural anisotropy

The geo-mechanical model described by Eq. (7) is
simplified considerably when the anisotropy is structural
rather than intrinsic, i.e., in the case of an isotropic
solid material with an anisotropic pore structure. If the
anisotropy is purely structural, so that the solid material
is isotropic, then the Biot coefficient tensors Eq. (8)
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