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Abstract

A formulation describing the strength anisotropy of transversely isotropic rock masses subjected to a three-dimensional stress state is

proposed based on the critical plane approach. It is assumed that the initiation of cracking is governed by the Hoek–Brown failure

criterion, and the anisotropy of the strength is described through the orientation dependence of the strength parameters m and s. Using

direct optimization of failure function, the direction of potential failure plane, on which the failure function reaches maximum, is

determined. True triaxial compression tests as well as conventional triaxial tests are simulated in order to verify the performance of the

proposed formulation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The existing experimental evidence [1–6] indicates that
most sedimentary and metamorphic rocks, such as shales
and slates, display a strong anisotropy of strength. These
types of rocks usually exhibit some preferred orientation of
fabric or possess distinct bedding planes, which results in
transversely isotropic behavior on the macro-scale.

Although many attempts have been made in the past to
describe the strength anisotropy of transversely isotropic
rocks, no general methodology has emerged yet. The first
attempt seems to be Jaeger’s single weakness plane theory
[7], where two independent failure modes, i.e., failure along
the discontinuity and failure through intact material, were
assumed to exist. The idealized distribution of triaxial
strength predicted by Jaeger’s theory is similar to that of
curve A in Fig. 1. Here, the inclination angle b is the angle
between the direction of minor principal stress and the
plane of weakness. For rocks displaying a discrete fabric
(i.e., multiple weakness planes), the experimental results

show that the strength varies continuously with b (see curve
B in Fig. 1). In order to reproduce the gradual variation of
the strength, Jaeger [7] postulated that the cohesion of rock
material, within the plane inclined with respect to the
weakness plane, was not constant but variable depending
on the angle of inclination, whereas the friction angle was
considered as constant. More recently, Hoek and Brown [8]
assumed that the strength parameters m and s in their well-
known failure criterion are not constant but variables
depending on the direction of weakness plane. However,
although the values of m and s are selected based on the
orientation of joints, it should be noted that the formula-
tion still remain isotropic, so that it is doubtful whether the
orientation of failure plane predicted by this approach is
realistic. Another drawback of this approach, as well as the
earlier one by Jaeger [7], is the requirement that the dip
direction of joints should coincide with the direction of
minor principal stress. In general, however, Jaeger [7] and
Hoek and Brown’s works [8] are of importance in that they
showed that the failure criterion can be modified to take
into account the anisotropy in strength properties. While
the applicability of Hoek and Brown (H–B) approach is
restricted, Nova [10] extended the discussion on the
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anisotropy to the true triaxial stress conditions. Amadei
and Savage [11] also analyzed the anisotropic strength of
jointed rock having a single set of joints in three-
dimensional (3D) conditions. In that work, the intact rock
strength is described by the H–B criterion, whereas the
joint strength is modeled by the Coulomb criterion with
zero cohesion. Although the variation of material proper-
ties with orientation was not directly considered, the
authors showed that the strength of the jointed rock
depends on the direction of joints and the intermediate
principal stress. A comprehensive review of the classical
failure criteria for anisotropic rocks is provided in [9],
where the authors compared the strength predictions based
on different formulations.

Recently another approach, referred to as critical plane
approach (CPA), has been proposed for the description of
strength characteristics of geological materials [12]. This
approach has been successfully applied to the analysis of
sedimentary rocks [13] as well as masonry structures [14].
The methodology involves searching for a direction of
failure plane, on which the value of failure function reaches
maximum. The formulation incorporates the spatial varia-
tion of strength parameters whose description involves
traceless second order tensors. The main advantage of CPA
lies in the fact that it is formulated in general stress space
and the parameters of anisotropy are described with
respect to the principal material triad, so that the numerical
implementation becomes systematic and straightforward.
On the other hand, its disadvantage is the additional
calculation time that is required to establish the direction
of critical plane by a suitable optimization scheme. Also,
the predictive abilities of the framework are affected by the
layering. In general, the performance of CPA is better for
periodic microstructures, such as rock systems with equally
spaced homogeneous layers.

In this paper, CPA is applied to describe the strength
properties of transversely isotropic H–B rock masses. The
anisotropy is defined by postulating that the H–B strength
parameters m and s are exponential scalar-valued functions
of the orientation in space. The optimization scheme
employed to find the critical direction is briefly discussed.
The paper is concluded by presenting some numerical

examples which illustrate the performance of the proposed
model.

2. Failure function

H–B failure criterion is expressed as the following
empirical nonlinear relation:

s1 ¼ s3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mscs3 þ ss2c

q
, (1)

where s1 is the major principal stress at failure, s3 is the
corresponding minor principal stress, sc is the uniaxial
compressive strength of intact rock material, and m and s

are strength parameters characterizing the rock mass
considered.
The local form of this criterion, in terms of traction

components on a plane, has been provided in the article by
Hoek [15]. It is defined by the following set of parametric
equations:

tf ¼ ðmsc=8Þf ðsf Þ, (2a)

f ðsf Þ ¼ cotf� cosf, (2b)

f ¼ tan�1ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h cos2 d� 1
p

Þ, (2c)

3d ¼ 90þ tan�1ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h3
� 1

p
Þ, (2d)

h ¼ 1þ 16ðmsf þ sscÞ=ð3m2scÞ, (2e)

where tf and sf are the shear and normal stresses acting on
a failure plane, and the compressive stress is considered as
positive. Eq. (2c) gives the instantaneous friction angle, so
that the corresponding instantaneous cohesion, c, can be
obtained from the relation

c ¼ tf � sf tanf. (3)

Hence, the failure function for a H–B material, defined in
s� t plane, takes the form

F ¼ t� ðmsc=8Þf ðsÞ. (4)

3. Definition of anisotropy in strength parameters

It is assumed that, on a plane having the unit normal n,
the strength parameters m and s appearing in Eq. (1) can be
defined in terms of the following distribution functions:

m ¼ am
1 þ am

2 expðn �XmnÞ, (5a)

s ¼ as
1 þ as

2 expðn �X
snÞ, (5b)

in which X’s are the second order tensors which describe
the bias in the spatial distribution of strength parameters,
whereas am

1;2 and as
1;2 are coefficients that are independent

of direction. Furthermore, the X’s are symmetric traceless
tensors whose principal directions coincide with the
material axes [8]. It should be noted that for an isotropic
material the O’s vanish, so that m and s become constant.
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Fig. 1. Strength anisotropy in transversely isotropic rock.
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