

Research Paper

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jmbbm

The improved mechanical properties of β -CaSiO₃ bioceramics with Si₃N₄ addition

Ying Pan^{a,b}, Kaihui Zuo^a, Dongxu Yao^a, Jinwei Yin^a, Yunchuan Xin^{a,b}, Yongfeng Xia^a, Hanqin Liang^a, Yuping Zeng^{a,*}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China ^bGraduate School of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 31 August 2015 Received in revised form 14 October 2015 Accepted 20 October 2015 Available online 30 October 2015 Keywords: β -CaSiO₃ Si₃N₄ Oxidation Mechanical properties

ABSTRACT

The motivation of this study is to investigate the effect of Si₃N₄ addition on the sinterability of β -CaSiO₃ ceramics. β -CaSiO₃ ceramics with different content of Si₃N₄ were prepared at the sintering temperature ranging from 1000 °C to 1150 °C. The results showed that Si₃N₄ can be successfully used as sintering additive by being oxidized to form SiO₂. The β -CaSiO₃ ceramics with 3 wt% Si₃N₄ sintered at 1100 °C revealed flexural strength, hardness and fracture toughness of 157.2 MPa, 4.4 GPa and 2.3 MPa m^{1/2} respectively, which was much higher than that of pure β -CaSiO₃ ceramics (41.1 MPa, 1.0 GPa, 1.1 MPa m^{1/2}). XRD analysis and SEM observation indicated that the main phase maintained to be β -phase after sintering.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades, calcium silicate (Ca–Si) based bioceramics have been introduced as potential bioactive materials for bone tissue regeneration due to their superior bone bioactivity compared to hydroxyapatite (HA) (Deaza et al., 1994; Ni et al., 2007; Oonishi et al., 2000). As one of the most important calcium silicate, β -CaSiO₃ is widely used for industrial ceramics. In recent years, β -CaSiO₃ has been investigated as bioactive biomaterials, and has drawn growing attention for its promising applications in bone tissue regeneration because of its good bioactivity, biocompatibility and biodegradability (De Aza et al., 1999; Ni et al., 2006, 2007). Nevertheless, the extensive use of β -CaSiO₃ is limited by their inadequate strength (Mehrali et al., 2014). Difficulties in preparing dense β -CaSiO₃ ceramics with improved mechanical properties make them suitable only for low-bearing applications (Endo et al., 1994; Shirazi et al., 2014b)

In order to improve the mechanical properties of β -CaSiO₃ ceramics, one of the effective methods is the incorporation of a second phase with good mechanical properties into β -CaSiO₃ (Mehrali et al., 2014; Shirazi et al., 2015). Using glasses as sintering additives has been considered as an effective way to promote the sintering properties of ceramics by liquid-phase sintering (Lin et al., 2009), whereas glassy phase in the ceramic matrix may be disadvantageous to the

^{*}Corresponding author at: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. Tel.: +86 21 52415203; fax: +86 21 52413903. E-mail address: yuping-zeng@mail.sic.ac.cn (Y. Zeng).

http://dx.doi.org/10.1016/j.jmbbm.2015.10.014 1751-6161/© 2015 Elsevier Ltd. All rights reserved.

mechanical strength of ceramics. Some researchers investigated the alumina reinforced β -CaSiO₃ and demonstrated that alumina particles could improve its hardness and fracture toughness (Shirazi et al., 2014a). Nevertheless, the sintering temperature of β -CaSiO₃ ceramics needed to be higher than 1125 °C, at which the flexural strength of the composites was considerably degraded by the transformation of β -phase into α -phase of CaSiO₃. Silicon nitride (Si₃N₄) is a kind of ceramics known for its high performance characterized by fracture toughness, high wear resistance and low coefficient of friction. Several works on biocompatibility and bioactivity of Si_3N_4 outlined that Si_3N_4 -based ceramics can be used as materials in the field of hard tissues surgery. Si_3N_4 based ceramics can be used as toxic free materials which has already been testified (Silva et al., 2004). In vivo tests, implanting Si_3N_4 pieces into the femures of rabbits had demonstrated good bone/implant attachment and no adverse cell reactions (Guedes e Silva et al., 2008). What is more, at low temperature, the surface of Si_3N_4 particles can be oxidized to form SiO_2 with high reaction activity and the

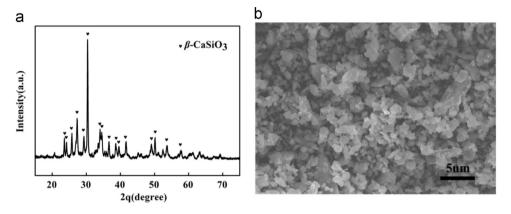


Fig. 1 – (a) X-ray diffraction patterns and (b) SEM micrograph of the as-prepared β -CaSiO₃ powder.

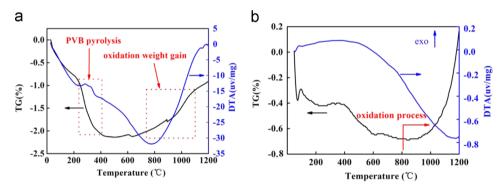


Fig. 2 – TG–DTA curves of (a) pure Si₃N₄ and (b) 3 wt% Si₃N₄ addition of β -CaSiO₃ ceramics.

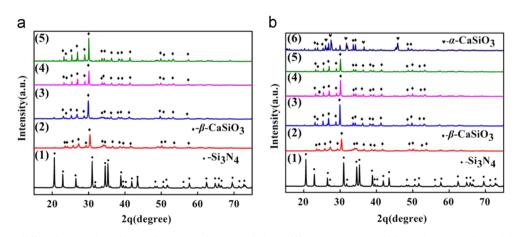


Fig. 3 – (a) X-ray diffraction peaks of β -CaSiO₃ ceramics containing different content of Si₃N₄: (1) pure Si₃N₄, (2) pure β -CaSiO₃, (3) 1 wt% Si₃N₄, (4) 3 wt% Si₃N₄, (5) 5 wt% Si₃N₄ sintered at 1100 °C. (b) X-ray diffraction peaks of β -CaSiO₃ ceramics containing 3 wt% Si₃N₄ sintered at different temperature: (1) pure Si₃N₄, (2) pure β -CaSiO₃, (3) 1000 °C, (4) 1050 °C, (5) 1100 °C. (6) 1150 °C.

Download English Version:

https://daneshyari.com/en/article/810500

Download Persian Version:

https://daneshyari.com/article/810500

Daneshyari.com