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a b s t r a c t

This paper discusses tension–compression asymmetry properties of Ogden hyperelastic

formulations. It is shown that if all negative or all positive Ogden coefficients are used,

tension–compression asymmetry occurs the degree of which cannot be separately

controlled from the degree of non-linearity. A simple hybrid form is therefore proposed

providing separate control over the tension–compression asymmetry. It is demonstrated

how this form relates to a newly introduced generalised strain tensor class which

encompasses both the tension–compression asymmetric Seth–Hill strain class and the

tension–compression symmetric Bažant strain class. If the control parameter is set to

q¼ 0:5 a tension–compression symmetric form involving Bažant strains is obtained with

the property Ψ λ1; λ2; λ3ð Þ ¼ Ψ 1
λ1
; 1λ2 ;

1
λ3

� �
. The symmetric form may be desirable for the

definition of ground matrix contributions in soft tissue modelling allowing all deviation

from the symmetry to stem solely from fibrous reinforcement. Such an application is also

presented demonstrating the use of the proposed formulation in the modelling of the non-

linear elastic and transversely isotropic behaviour of skeletal muscle tissue in compression

(the model implementation and fitting procedure have been made freely available). The

presented hyperelastic formulations may aid researchers in independently controlling the

degree of tension–compression asymmetry from the degree of non-linearity, and in the

case of anisotropic materials may assist in determining the role played by, either the

ground matrix, or the fibrous reinforcing structures, in generating asymmetry.
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1. Introduction

Realistic constitutive modelling for biological soft tissue is

relevant to research areas such as impact biomechanics

(Ivancic et al., 2007; Muggenthaler et al., 2008; Forbes et al.,

2005), rehabilitation engineering (Linder-Ganz et al., 2007,

2008; Portnoy et al., 2008, 2009), tissue engineering (Hinds

et al., 2011), gait analysis (Mathur et al., 2010), surgical

simulation (Lim et al., 2007; Audette et al., 2004; Famaey

and Vander Sloten, 2008), and modelling of soft tissue drug

transport (Wu and Edelman, 2008; Wu et al., 2009). Many

biological materials present with significantly different beha-

viour for tensile or compressive loading (e.g. muscle tissue

(Gindre et al., 2013), cervical tissue (Myers et al., 2015), bone

(Niebur et al., 2000), intervertebral disk (Cortes and Elliott,

2012), and cartilage (Nagel and Kelly, 2010). This is known as

tension–compression asymmetry. Further, biological materi-

als are also non-linear elastic, and often anisotropic due to

the presence of fibrous connective tissue structures. Aniso-

tropy can be modelled by combining an isotropic ground

matrix with fibrous reinforcement. Through adjustment of

material parameters current hyperelastic constitutive formu-

lations offer control over the dominance of either the ground-

matrix or the fibrous components, as well as the degree of

non-linearity in their response. Tension–compression asym-

metry can be present in the behaviour of isotropic formula-

tions, and therefore ground-matrix formulations, as well as in

fibrous reinforcement components. However, in many for-

mulations the constitutive parameters dictating the degree of

non-linearity also affect the degree of tension–compression

asymmetry. As such the source and degree of tension–

compression asymmetry is often not specifically controlled

in the constitutive formulation. This study presents consti-

tutive formulations, based on Ogden hyperelasticity, for

isotropic materials, such as ground-matrices, offering sepa-

rate control over the degree of non-linearity and tension–

compression asymmetry. Such formulations may aid in the

identification of the role played by either the ground matrix,

or the fibrous reinforcing structures, in generating tension–

compression asymmetry.
According to the representation theorems in non-linear

continuum mechanics (see also Holzapfel, 2000; Bonet and

Wood, 2008; Ogden, 1984) for isotropic materials the strain

energy density function defining constitutive behaviour for

finite elasticity can be formulated in terms of principal

invariants I1; I2; I3f g or principal stretches λ1; λ2; λ3f g such that

Ψ I1; I2; I3ð Þ ¼ Ψ λ1; λ2; λ3ð Þ. Several successful formulations have

been proposed for incompressible rubber-like materials (see

also Treloar et al., 1976). A general first order expression for

incompressible materials in terms of principal invariants is

given by the so called Mooney–Rivlin hyperelastic model

(Mooney, 1940; Rivlin, 1948a, 1948b) often presented as:

Ψ I1 Cð Þ; I2 Cð Þð Þ ¼ C1 I1 Cð Þ�3ð Þ þ C2 I2 Cð Þ�3ð Þ ð1Þ

For incompressible materials, J¼ det Fð Þ ¼ 1 and therefore

I2 Cð Þ ¼ I1 C�1� �
, allowing the Mooney–Rivlin form to be rewrit-

ten in terms of principal stretches as:

Ψ λ1; λ2; λ3ð Þ ¼ C1 λ1
2 þ λ2

2 þ λ3
2�3

� �
þ C2 λ1

�2 þ λ2
�2 þ λ3

�2�3
� � ð2Þ

Mooney (1940) derived this form by postulating isotropy,
incompressibility, and the requirement that tractions for
simple shear are proportional to the shear. To capture non-
linear behaviour for finite deformations Mooney (1940) pro-
posed a more general form whereby tractions were postu-
lated to be explicit functions of the shear:

Ψ λ1; λ2; λ3ð Þ ¼
X1
m ¼ 1

�
A2m λ1

2m þ λ2
2m þ λ3

2m�3
� �

þB2m λ1
�2m þ λ2

�2m þ λ3
�2m�3

� �� ð3Þ

(follows original notation by Mooney (1940), note that
mAN, and plays the role of a subscript index, for the
constitutive parameters, and appears in the exponent for
the stretches). It can be seen that if A2m ¼ B2m this form has
the tension and compression symmetry property
Ψ λ1; λ2; λ3ð Þ ¼ Ψ 1

λ1
; 1λ2 ;

1
λ3

� �
. Mooney (1940) and more specifically

Rivlin (1948a and 1948b) argued the strain energy density
should be a symmetrical and even-powered function of the
principal stretches. Mooney (1940) also presented a form
offering control over asymmetry by using A2m ¼ G2mþH2m

4 and
B2m ¼ G2m �H2m

4 :

Ψ λ1; λ2; λ3ð Þ ¼
X1
m ¼ 1

X3
i ¼ 1

G2m

4m
λi
2m þ λi

�2m�2
� �"

þ
X3
i ¼ 1

H2m

4m
λi
2m�λi

�2m� �# ð4Þ

Ogden (1972a and 1972b) also removed the symmetry
constraint, and, since stretches are naturally positive quan-
tities, dropped the requirement for integer and even-powers
leading to the highly flexible form:

Ψ λ1; λ2; λ3ð Þ ¼
XN
a ¼ 1

ca
ma

λ1
ma þ λ2

ma þ λ3
ma �3ð Þ

¼
XN
a ¼ 1

ca
ma

X3
i ¼ 1

λi
ma �1ð Þ

" #

WithmaAℝ;and camað ÞAℝ40 ð5Þ
The Ogden hyperelastic formulation has been employed to

a great extent for incompressible rubber-like materials
(Ogden, 1986; Marckmann and Verron, 2006) and has recently
been shown to agree with the statistical theory of micro-
scopic fibre networks (Ehret, 2015). Typically for rubber-like
materials parameter fitting of the Ogden form involves 3–4
terms, whereby 1 term involves negative ma and 2–3 terms
involve positive ma values (see also Marckmann and Verron,
2006; Ehret, 2015; Ogden et al., 2004). Since mechanical testing
of biological samples is more challenging, and the data is
often of a sparser nature compared to data for engineering
materials, reduced order models are often employed leaving
fewer parameters to be identified. For instance, 1st order
Ogden formulations have been used for skeletal muscle
tissue (Bosboom et al., 2001) and skin (Groves et al., 2012).
In this case only positive ma values are used. For such
reduced order formulations, as will be demonstrated in this
paper, a tension–compression asymmetry exists. When the
parameters controlling the degree of non-linearity (the ma

values) are adjusted the asymmetry is also affected. Hence
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