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a b s t r a c t

Structure tensors have been applied as descriptors of tissue morphology for constitutive

modeling. Here the reliability of these tensors in representing tissues structure is investigated

by model simulations of a few examples of generated and measured planar fiber orientation

distributions. Reliability was evaluated by comparing the data with the orientation density

distribution recovered from the structure tensor representation, and with a orientation density

recovered from an alternative representation by Fourier series of spherical harmonics. The

results show that except for the case of uniform or close to uniform orientation distributions,

the distributions recovered from the structure tensor fit the data poorly. On the other hand,

orientation distributions recovered from Fourier series of spherical harmonics converge to the

data distributions provided sufficient terms are included in the truncated series. These results

suggest that the structure tensor is a reliable descriptor of tissue structure only under very

limited cases.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structural modeling of tissue mechanics incorporates as key
determinants both the fibers orientation distribution and
their uniaxial properties. The fibers' orientation dispersion
is represented by a density distribution function (ddf) which
can be expressed based on the spherical polar angles ϕ; θ as
ψðϕ; θÞ. The orientation ddf representation has been applied
for a variety of tissues such as skin, myocardium, articular
cartilage, arteries, veins and aortic valves (Ateshian et al.,
2009; Belkoff and Haut, 1991; Billiar and Sacks, 2000;
Decraemer et al., 1980; Freed et al., 2005; Girard et al., 2009;
Hollander et al., 2011b; Lanir et al., 1996; Nevo and Lanir, 1989;
Nguyen et al., 2008; Pandolfi and Holzapfel, 2008; Sacks, 2003;
Wuyts et al., 1995; Zulliger et al., 2004).

Constitutive characterization of tissues based on the ddf
structural representation has several advantages. First, it was
shown to be superior to other approaches in its descriptive (fit
to experimental data) and predictive capabilities (Hollander
et al., 2011a). Second, different types of fibers can be readily
added by summing the effects of all fiber networks, each with
its own orientation ddf and mechanical properties (Lokshin
and Lanir, 2009). Third, the requirement of convexity of the
constitutive formulation is automatically satisfied in the
structural formulation since the mechanical responses of
biological fibers are convex (Lanir, 1996). Finally, fibers' non-
elastic properties can be readily incorporated into the model
by replacing the fiber hyper-elastic stress with its non-elastic
one, such as fiber viscoelasticity and pre-conditioning adap-
tation (Lokshin and Lanir, 2009; Raz and Lanir, 2009).
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Constitutive formulation based on the orientation ddf has a
numerical disadvantage: it involves double integration over the
entire range of the polar spherical angles ϕ; θ. This computa-
tional burden may impede application of structure based mate-
rial laws in finite element analysis. An analytical closed form
structure based model which circumvents this difficulty has
been developed, but only for membrane tissues subjected to
biaxial stretch where all the fibers are stretched, and for
particular choices of the orientation ddf and fiber mechanical
properties (Raghupathy and Barocas, 2009). Yet, as pointed out
by Federico and Herzog (Federico and Herzog, 2008), if some
fibers buckle (as may happen under deformation protocols such
as uniaxial stretch and shear tests), then analytical derivation is
not possible and numerical schemes are required.

To reduce the computational effort associated with double
integration over the respective ranges of the polar angles, several
studies have applied the generalized structure tensor as repre-
sentation of the fibers orientation dispersion (Federico and
Herzog, 2008; Freed et al., 2005; Gasser et al., 2006). It was also
applied for analysis of cell traction-induced alignment of col-
lagen fibrils and cells in a cell-seeded gel (Barocas and
Tranquillo, 1997), and in analysis of remodeling induced evolu-
tion of soft tissue structure (Driessen et al., 2003). Structure
tensors have been previously applied for modeling the flow of
polymer melts (McLeish and Larson, 1998). In common with
melts literature, the higher efficiency in using the structure
tensor is obtained by applying constitutive laws for the fibers'
strain energy function (and stresses) which depend only on a
single global measure of the fibers' deformation rather than on
the actual deformation which is orientation dependent. This
single measure is derived from both the tissue global strain and
the structure tensor. An example of such a measure commonly
used is the weighted orientation-averaged squared stretch λ

2
.

A question which naturally arises regarding the application of
structure tensor relates to its reliability in representing the
tissue's structure and predicted response. There are two inde-
pendent aspects involved, one relating to the bias introduced by
applying a single global measure of the deformation to represent
the fiber response. The other is a more fundamental one: how
reliable is the structure tensor in representing the true fiber
orientation distribution. The first question was previously
addressed (Federico and Herzog, 2008) and numerically investi-
gated (Cortes et, al. 2010) by comparing predictions of the main
normal and shear stress components, between the full structural
characterization and the structure tensor one, under uniaxial,
biaxial and shear test protocols. The results showed that both
formulations are equivalent only for limited cases of planar
distributions under equibiaxial stretch, and when the fiber
dispersion is very small. Federico and Herzog (Federico and
Herzog, 2008) pointed out that the good fit using this approach
for blood vessels (Gasser et al., 2006) was obtained since the
fibers orientation dispersion was small, combined with the fact
that all fibers were loaded in tension. However, under a general
deformation scheme (e.g., uniaxial stretch, shear) some fibers
may contract and buckle thereby biasing the calculated λ

2
in a

non-physical manner. To deal with this bias, they proposed to
exclude contracted fibers when calculating λ

2
.1

The aim of this communication is to address the second
concern relating to the reliability of the structure tensor
descriptor of the tissue fibers' orientation distribution.

2. Methods

2.1. Mathematical background

2.1.1. Structural tissue characterization
In the structural approach to tissue characterization (Lanir,
1979, 1983) the fibers' orientation dispersion is quantified by a
density distribution function of the polar angles, ψðϕ; θÞ. Being
a density distribution (ddf), ψðϕ; θÞ must obey the normal-
ization condition
Z
ϕ

Z
θ
ψðϕ; θÞU sin ϕUdϕUdθ¼ 1 ð1:1Þ

In addition, ψðϕ; θÞ is even, i.e., a fiber oriented at any angle
ðϕ; θÞ is indistinguishable from a fiber oriented in the opposite
direction at an angle ðπ�ϕ; θ þ πÞ.

For tissues with hyperelastic fibers, their strain energy
function equals the weighted sum of the fiber strain energies.
This is thus expressed by2

Wf ðCÞ ¼ ϕ0
f

Z
ϕ

Z
θ
ψðϕ; θÞUwf ðλf ÞU sin ϕUdϕUdθ ð1:2Þ

The fiber network second Piola–Kirchoff stress is derived
from (1.2) by chain differentiation,3

Sf ðCÞ ¼ 2UdWf =dC¼ ϕ0
f

Z
ϕ

Z
θ
ψðϕ; θÞUsf ðλf ÞUNNU sin ϕUdϕUdθ;

λ2f ¼NTCN; Nðϕ; θÞ ¼ sin ϕU cos θUe1 þ sin ϕU sin θUe2

þ cos ϕUe3; ð1:3Þ
where C is the right Cauchy–Green strain tensor, ϕ0

f is the
reference fibers volume fraction, and ei are unit base vectors in
a Cartesian coordinate system. The functions wf ðλf Þ and sf ðλf Þ
¼ ð2=λf ÞUdwf =dλf are respectively the strain energy and second
Piola–Kirchoff stress of a uni-directional parallel fiber bundle as a
function of its orientation dependent stretch λf .N is a unit vector
in the bundle reference orientation. Eq. (1.3) results from the
assumed affine deformation and NN¼ ðdλf =dCÞ=2 is the direct
vector product of N with itself.

2.1.2. The structure tensor method
The structure tensor H applied in previous studies is related
to the orientation ddf ψðϕ; θÞ by

1Actually, it is easy to show that application of λ
2
may lead to absurd

results. Consider a simple case of an isotropic incompressible tissue with

(footnote continued)
fibers equally distributed between three normal directions parallel to the
Cartesian coordinates. Under uniaxial stretch, fibers in the lateral
directions will contract and buckle. In contrast, the structure tensor
method with λ

2
as a deformation measure predicts these fibers to be

stretched. Federico and Herzog (Federico and Herzog 2008) proposal to
exclude compressed fibers from λ

2
evaluation does not remedy this

problem.
2The term sin ϕ in the integrands of (1.1), (1.2), (1.3), comes from

the Jacobian of the polar spherical coordinate system. In some earlier
studies it was incorporated into ψðϕ; θÞ.

3In cases of non-elastic fibers the hyper-elastic fiber stress sf ðλf Þ is
replaced by its non-elastic counterpart sf ðλf ; tÞ.
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