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a b s t r a c t

The physical layout of drinking water utilities makes them inherently vulnerable to contamination
incidents caused by routine operations. These contaminations present environmental health concerns
including but not limited to total trihalomethanes, lead, and chlorine residual issues. To achieve the goal
of cleaner production, sensor placement in municipal drinking water networks in response to possible
public health threats has become one of the most significant challenges currently facing drinking water
utilities, especially in small-scale communities. Long-term monitoring is needed to develop modern
concepts and approaches to risk management for these utilities. We developed a Rule-based Decision
Support System (RBDSS), a methodology to generate near-optimal sensor deployment strategies with
low computational burden, such as those we often encountered in large-scale optimization analyses.
Three rules were derived to address the efficacy and efficiency characteristics of such a sensor deploy-
ment process: (1) intensity, (2) accessibility, and (3) complexity rules. Implementation potential of this
RBDSS was assessed for a small-scale drinking water network in rural Kentucky, United States. Our case
study showed that RBDSS is able to generate the near-optimal sensor deployment strategies for small-
scale drinking water distribution networks relatively quickly. The RBDSS is transformative and trans-
ferable to drinking water distribution networks elsewhere with any scale.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Drinking water distribution systems are inherently vulnerable to
accidental or intentional water contamination incidents. Because
those networks are large, spatially distributed, and complicated
infrastructures, the possibility of human-related influences is
significantly high (Buckle, 2000; Haestad et al., 2003; Karamouz
et al., 2010). For example, in developing countries like Guatemala,
inadequate clean water and waterborne bacterial infection among
young children are the cause of disease and productivity losses
equivalent to 2% of gross domestic product (Norstrom, 2007;
Tune and Elmore, 2009); therefore, the numerous studies being

conducted for vulnerability assessment, risk reduction, monitoring
sensor network, and contamination warning system are rigorous.
A recent case study of vulnerability assessment of water supply
system components in a major city included five criteria: distribu-
tion, spread, visibility, exposure, and recovery. It found that the
failure of water distribution networks and water treatment plants
generated the highest human losses among other water supply
failures (Karamouz et al., 2010). Because these incidents often have
severe immediate and long-term human health consequences,
drinking water distribution networks require intensive monitoring
and security considerations using real-time early warning systems
(EWS) (Clark and Deininger, 2001; National Research Council, 2002).

To build a functional EWS, a sensor location system should be
designed to satisfy multiple criteria with or without optimization
schemes (Berry et al., 2003), yet the optimization of sensor deploy-
ment locations is often necessary because of the high cost of moni-
toring devices and to achieve the highest degree of protection for
a finite number of sensors (Thompson et al., 2007, 2009). Therefore,
variousmethodologies for layout design of monitoring stations have
been proposed in the past decade in water distribution systems to
detect the migration of any contaminations that can cause adverse
effects on consumer health (Kessler et al., 1998; Al-Zahrani and
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Moied, 2001; Woo et al., 2001; Haught et al., 2003; Ostfeld and
Salomons, 2004; Berry et al., 2003, 2005, 2006; Propato, 2006;
Ghimire and Barkdoll, 2006; Preis et al., 2007; Aral et al., 2010; Hart
and Murray, 2010; Weickgenannt et al., 2010). Numerous technical
approaches were developed for optimizing sensor placement,
including mixed-integer programming (MIP) models (Lee et al.,
1991; Lee and Deininger, 1992; Watson et al., 2004; Berry et al.,
2004, 2005; Propato et al., 2003), combinatorial heuristics (Kessler
et al., 1998; Kumar et al., 1999; Ostfeld and Salomons, 2004),
general-purpose metaheuristics (e.g., Ostfeld and Salomons, 2004),
and lagrangian heuristics (Berry et al., 2008). Ideally a large number
of sensorswould increase themonitoring coverage of a network, but
it would also increase cost accordingly; however, these methodolo-
gies are usually not applicable to small communities and developing
countries due to the complication of methodologies and the lack of
resources such as funding and technical computing software. More
important, the lower capital cost of the projects will more likely be
granted if performance is comparable to the higher-cost project,
especially in small communities or developing countries. The
remaining scientific question is how to generate sensor deployment
strategies with low computational burden, such as we often
encountered in large-scale optimization analyses.

This study developed a Rule-based Decision Support System
(RBDSS), a new method for sensor deployment, to generate near-
optimal sensor deployment strategies with low computational
burden to improve consumers’ health and safety by preventing
civilians from consuming contaminated water. Three rules were
derived to address the efficacy and efficiency characteristics: (1)
intensity, (2) accessibility, and (3) complexity rules. Such an RBDSS is
thus designed to minimize the total number of costly sensors and
maximize themonitoring coverage topromote thecost-effectiveness
of an EWS in small communities. Because a real-world case study is
the most adequate research strategy for theoretical research to the
real-world implementation, RBDSS was applied to the water distri-
bution network in Hardin No. 1 County in Kentucky to validate the
methodology. In this work we provide the formulation of the three
rules for RBDSS, present a real-world application and results of an
RBDSS, and apply these results to a rural community in Kentucky.

2. Methodology of rule-based decision support system

The RBDSS developed in this study is a decision support system
to optimize sensor deployment location based on three rules, the
intensity, accessibility, and complexity rules, for applications in

small communities and developing countries to maximize the
protection of contaminant exposure to the population and mini-
mize the cost for sensor deployment. Because the Maximum
Contaminant Levels (MCLs) are regulated by the US Environmental
Protection Agency (EPA), the intensity rule, which has primary
focus on concentration of contaminants, was analyzed prior to the
accessibility and complexity rules in this RBDSS. To retrieve the
information of population exposure in the context of the intensity
rule, the EPA’s water quality network (EPANET) model was applied
for the vulnerability assessment (Rossman et al., 1994). EPANET is
software developed by EPA’s Water Supply and Water Resources
Division (EPA, 2011) that models water distribution piping systems
and performs extended-period simulation of the hydraulic and
water quality behavior within pressurized pipe networks. In prin-
ciple, the accessibility rule addresses the flow fraction downstream
at a node driven by the downstream water demand within the
prescribed spatiotemporal pattern of a drinking water distribution
network. Thus, the fraction of water flow can be assumed as
a surrogate index to indicate the percentage of population that
could be affected when an unexpected contaminant intrusion
occurs. The complexity rule aims to deconstruct the configuration
of the node structure and translate the configuration to account for
a larger population that might possibly be affected by an event
within a network, eliminating the need to deal with temporal
variability. Each of these three rules can be analyzed independently
based on the same set of the collected data, and all three rules may
also be grouped together, with flexibly contributing to the final
decision of sensor deployment by differing collective methods. To
illustrate the robustness of these three rules, the rules were applied
in three scenarios for residual chlorine, total trihalomethanes
(TTHM), and lead simulated by EPANET.

The analytical process of RBDSS consists of four phases,
including data collection, dynamic simulation, development, and
evaluation (Fig. 1). The collected data consist of Geographic Infor-
mation System (GIS), water quality, and water flow data. The RBDSS
is designed to ease the burden of large-scale sensor location opti-
mization to minimize cost and maximize coverage of protection in
drinking water networks with the aid of a predetermined number
of sensors. Within this context, EPANET, EXCEL�, and LINGO 10.0
were selected to support essential dynamic simulations, data
analysis, and bubble sorting of data and selection of sensor loca-
tions, respectively, in which EXCEL� was used to handle data
streams in support of EPANET simulation and LINGO 10.0 optimi-
zation modules.

Fig. 1. Schematic of the RBDSS process.
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