ARTICLE IN PRESS

Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Dry carbonate process for CO_2 capture and storage: Integration with solar thermal power

D. Bonaventura^{a,b}, R. Chacartegui^{b,*}, J.M. Valverde^c, J.A. Becerra^b, C. Ortiz^c, J. Lizana^d

^a Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

^b Departamento de Ingeniería Energética, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain

^c Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Seville, Spain

^d Departamento de Construcciones Arquitectónicas, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Seville, Spain

ARTICLE INFO

Keywords: Carbon capture Post-combustion carbon capture Coal fired power plant Dry carbonate process CCS economy Solar thermal power

ABSTRACT

Capture and sequestration of CO₂ released by conventional fossil fuel combustion is an urgent need to mitigate global warming. In this work, main CO₂ capture and sequestration (CCS) systems are reviewed, with the focus on their integration with renewables in order to achieve power plants with nearly zero CO2 emissions. Among these technologies under development, the Dry Carbonate Process shows several advantages. This manuscript analyses the integration of a CO₂ sorption-desorption cycle based on Na₂CO₃/NaHCO₃ into a coal fired power plant (CFPP) for CO2 capture with solar support for sorbent regeneration. The Dry Carbonate Process relies on the use of a dry regenerable sorbent such as sodium carbonate (Na₂CO₃) to remove CO₂ from flue gases. Na₂CO₃ is converted to sodium bicarbonate (NaHCO₃) through reaction with CO₂ and water steam. Na₂CO₃ is regenerated when NaHCO3 is heated, which yields a gas stream mostly containing CO2 and H2O. Condensation of H₂O produces a pure CO₂ stream suitable for its subsequent use or compression and sequestration. In this paper, the application of the Dry Carbonate CO₂ capture process in a coal-based power plant is studied with the goal of optimizing CO2 capture efficiency, heat and power requirements. Integration of this CO2 capture process requires an additional heat supply which would reduce the global power plant efficiency by around 9-10%. Dry Carbonate Process has the advantage compared with other CCS technologies that requires a relatively low temperature for sorbent regeneration (< 200 °C). It allows an effective integration of medium temperature solar thermal power to assist NaHCO3 decarbonation. This integration reduces the global system efficiency drop to the consumption associated with mechanical parasitic consumption, resulting in a fossil fuel energy penalty of 3-4% (including CO₂ compression). The paper shows the viability of the concept through economic analyses under different scenarios. The results suggest the interest of advancing in this Solar-CCS integrated concept, which shows favourable outputs compared to other CCS technologies.

1. Introduction

There is a worldwide interest in finding competitive solutions for capturing and sequestering the carbon dioxide (CO₂) released from fossil fuel combustion processes to mitigate global warming. In the 2015 Paris Climate Conference (COP21), a universal agreement signed by the consensus of 195 countries was reached, which has been ratified in 2016, to drastically reduce CO₂ emissions in order to keep global warming below 2 °C from preindustrial levels [1]. To this end future coal-fired power plants (CFPPs) must be near to CO₂ emissions free. Currently, 76.5% of the electricity generation in the world is produced by non-renewable sources [2]. The main R & D challenge for the viability of CFPPs and other fossil fuel based facilities is to capture

 CO_2 by means of feasible and affordable technologies while, at the same time, penalties on power production and efficiency are minimized.

Carbon capture and storage (CCS) technologies can be classified into three main groups: pre-combustion, post-combustion and oxy-fuel combustion processes [3]. Despite post-combustion capture (PCC) processes are being widely investigated in the last years, Boundary Dam (100MWe) in Canada is currently the only commercial CFPP that applies CCS by using a chemical absorption process based on monoethanolamine (MEA). In amine-based systems the CO₂ loaded solvent is separated from the rest of the exhaust gas and heated, which yields relatively pure CO₂ ready for compression and sequestration. After regeneration, the solvent is cooled to be reused [4]. A main issue of systems based on amine absorption is the large amount of heat

* Corresponding author.

E-mail address: ricardoch@us.es (R. Chacartegui).

http://dx.doi.org/10.1016/j.rser.2017.06.061

Received 22 December 2016; Received in revised form 15 June 2017; Accepted 18 June 2017 1364-0321/ \odot 2017 Elsevier Ltd. All rights reserved.

D. Bonaventura et al.

Nomenclature	FGPLANT CO_2 input flow to the carbonator
	GHG greenhouse gases
AC avoiding CO_2 cost	IPCC Intergovernmental Panel on Climate Change
ASU air separation unit	IRR internal rate of return (%)
BAC biomass annual cost	m _{CO2, FGPLANT} CO ₂ mass flows of flue gas exits the CFPP
BFB bubbling fluidized bed	$m_{CO2, CARB.OUT}$ CO ₂ mass flows of flue gas exits the carbonator
CaL calcium-looping process	MEA monoethanolamine solvent
CARB carbonation	NGCC natural gas combined cycles
CCS carbon capture and storage	NPV net present value
CFB circulating fluidized bed	O&M operation and maintenance
CFPP: coal-fired power plant	PCC post-combustion capture
COE cost of electricity	P _{NET, year} total electric energy per year produced by the plant.
COECCS cost of electricity associated to CCS system	Q _{CFPP} CFPP thermal power consumptions
c_{CO2} carbon tax	Q _{DC} dry carbonate thermal power consumption
COP21 2015 Paris Climate Conference	SE-SMR sorption-enhanced steam methane reforming
CPU CO2 purification unit	SMR steam methane reforming
CSP concentrated solar power	SPB simple payback
DCP dry carbonate process	SPECCA specific energy consumption for CO ₂ avoided
DECARB: decarbonation	TCR capital cost
ECCS emission ratio with dry carbonate process integrated	$ton_{CO2, ref}$ reference plant CO_2 emissions
ECO2 AVOIDED avoided cost due to the avoided emission of CO2,	ton _{CO2, CCS} CO ₂ emissions with the dry carbonate process inte-
EDRYCARBONATE carbon capture system installation cost	grated
ENET, GAIN, year annual benefit due to avoided emissions.	VOM variable cost
EO&M operation and maintenance cost	W _{CFPP} CFPP net power production
EINCR revenues due to electricity incremented cost	W _{COMP} electric consumption for CO ₂ compression
Eref reference plant emission ratio	$W_{cons, DC}$ dry carbonate electric power consumption
ESOLAR solar plant installation cost	W _{solid} electric consumption for solids conveying
ETOT, REV total annual revenues	WGS water gas shift
ETOT total investment cost	WHATHOT water inlet stream
FB fluidized bed	YR yearly revenues
FC fuel cost	ϵ_{ABS} absorption efficiency
FCF fixed charge factor	η_{plant} plant efficiency
FGD flue gas desulfurization	η_{CCS} plant efficiency with the dry carbonate process integrated
FGPLAN4 cooled flue gas	

required to regenerate the solvent. This heat, which is usually obtained from the steam cycle, penalizes significantly the power plant efficiency. Moreover, amine-based systems have serious problems related to toxicity and corrosion [5]. In addition, additional power is required to compress the captured CO_2 for transporting it through the pipeline network to the storage site.

Among the new generation of CCS technologies under R & D the Dry Carbonate Process stands as one of the most interesting options. This process uses Na_2CO_3 solid particles as dry sorbent to separate CO_2 from other flue gases through the gas-solid carbonation reaction. An important advantage of this approach is that sorption can occur at relatively low temperature (below 100 °C) to achieve a high capture

capacity whereas regeneration is also carried out at relatively low temperatures (around 200 °C). Such temperatures do not cause significant degradation of the sorbent besides of not requiring high amounts of energy supply [6]. Other advantages of the Dry Carbonate Process are the low cost of the sorbent as well as the high CO₂ sorption capacity [7]. Due to the high interest attracted by this technology, CO₂ capture pilot plants have been integrated in CFPP in USA and Korea [8]. Recent studies have analyzed also its potential integration with the production of chemical products [9].

In this paper, a novel integration of the Dry Carbonate Process for CO_2 capture with solar thermal power is analyzed. The relative low temperature in the regeneration reactor allows for an effective integra-

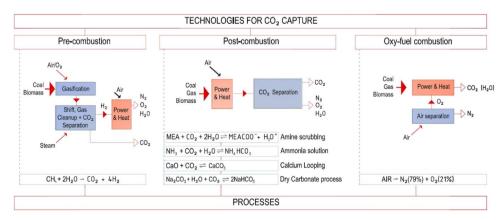


Fig. 1. Overview of technologies for CO2 capture.

Download English Version:

https://daneshyari.com/en/article/8111916

Download Persian Version:

https://daneshyari.com/article/8111916

Daneshyari.com