ARTICLE IN PRESS

Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Sacrificial hydrogen production over TiO₂-based photocatalysts: Polyols, carboxylic acids, and saccharides

Masahide Yasuda^{a,*}, Tomoko Matsumoto^b, Toshiaki Yamashita^c

^a Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1, Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan

^b Center for Collaborative Research and Community Cooperation, University of Miyazaki, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan

^c Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo, Miyazaki 885-8567, Japan

ARTICLE INFO

Keywords: Hydrogen evolution Pt/TiO₂ Polyols Carboxylic acids Saccharides Chemical yields Quantum yields

ABSTRACT

Photocatalytic generation of H_2 from water over titanium dioxide (TiO₂) has received a great deal of interest for developing a renewable and clean energy source. It is initiated by charge-separation in TiO₂ upon photoexcitation. The electron reduces water to generate H_2 while the hole oxidizes hydroxide to generate hydroxyl radicals. However, water-splitting into O_2 and H_2 is not easy because of the large up-hill reaction and rapid reverse reaction. It is well known that the use of electron-donating sacrificial agents (hole scavengers) remarkably accelerates TiO₂-photocatalyzed H_2 evolution in which the hydroxyl radical is consumed by the sacrificial agents. Thus, sacrificial H_2 production over a TiO₂ photocatalyst is a convenient method to generate H_2 from biomass and waste. This paper reviews the sacrificial H_2 production from polyols, carboxylic acids, and saccharides, focusing on the chemical yield of H_2 production.

1. Introduction

The consumption of fossil resources causes serious environmental problems such as global warming and air pollution. As major issues in the current world, there is an urgent need to stop CO₂ levels increasing and to find new renewable energy sources to use instead of fossil fuels. Hydrogen production from water and solar energy (artificial photosynthesis) has received a great deal of attention while developing renewable and clean energy sources [1]. Titanium dioxide (TiO₂) has been a leading photocatalyst for the production of H₂ from H₂O since the discovery of photoelectrochemical H_2 evolution using TiO_2 by Honda and Fujishima [2]. Photocatalytic water-splitting over TiO₂ is initiated by charge-separation in TiO₂ upon photoexcitation [3]. The electron reduces water to generate H2 while the hole oxidizes hydroxide to generate hydroxyl radicals [4]. In most cases, noble metals (Pt, Pd, and Au) are deposited onto the TiO2 to accelerate the reduction of water by electrons, and electron-donating sacrificial agents (hole scavengers) are added to accelerate the consumption of hydroxyl radicals, thus enhancing H_2 evolution (sacrificial H_2 production) [5,6].

In general, TiO_2 can catalyze the three processes shown in Scheme 1. The photooxidation of organic compounds and pollutants with oxygen can easily proceed over TiO_2 , since it is an extremely downhill process (Scheme 1A). Water-splitting into O_2 and H_2 (Scheme 1B)

is not an easy process because of the large up-hill reaction and rapid reverse reaction. Sacrificial H₂ production is an up-hill process but the energy change is small (Scheme 1C). Therefore, sacrificial H₂ production proceeds smoothly compared with water-splitting without sacrificial agents, thus providing a convenient method to generate H₂. The first study on sacrificial hydrogen production was reported by Kawai and Sakata in 1980 [7]. They succeeded in evolving H₂ from sugar and carboxylic acids in photocatalytic reactions over $RuO_2/Pt/TiO_2$ [7] and Pt/TiO₂ [8,9], respectively.

With this back ground, various kinds of reviews have been published. For example, water-splitting over TiO_2 -based photocatalysts without sacrificial agents was reviewed by Ni et al. in 2007 [10]. Fornasiero et al. reviewed the photo-reforming of biomass-derived sacrificial agents over metal oxides in 2011 [11]. Moreover, Puga reviewed sacrificial photocatalytic H₂ production from biomass-derived materials from the viewpoint of the development of the photocatalyst in 2016 [12]. This paper reviews sacrificial H₂ production from polyols, carboxylic acids, and saccharides, focusing on the chemical yields of H₂ production.

2. Titanium oxide-based photocatalysts

The electrolysis of water proceeds theoretically by the application of

Abbreviations: PR, photo-reforming; SA, saccharification; SSF, simultaneous saccharification and fermentation; LMAA, low-moisture anhydrous ammonia pretreatment * Corresponding author.

E-mail address: yasuda@cc.miyazaki-u.ac.jp (M. Yasuda).

http://dx.doi.org/10.1016/j.rser.2017.05.243

Received 24 March 2016; Received in revised form 19 February 2017; Accepted 26 May 2017 1364-0321/ © 2017 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

Scheme 1. Three types of energy diagrams for down-hill (A), large up-hill (B), and small up-hill processes (C).

1.23 V of voltage. Since water splitting is a two-electron process, 237.14 kJ mol⁻¹ of energy is required [13]. TiO₂ can absorb a light at 384 nm which corresponds to 308.5 kJ mol⁻¹ of excitation energy and exceeds the required energy. For photocatalytic reaction, almost all research has used TiO₂ in the form of P25 (Degussa Co. Ltd, Germany) and ST01 (Ishihara Sangyo Co. Ltd., Japan). P25 is prepared by hydrolysis of TiCl₄ and comprises 75% anatase and 25% rutile, whereas ST01 is prepared by hydrolysis of TiOSO₄ and comprises 100% anatase [14]. There are several methods to enlarge the surface area of TiO₂. For example, PEG (polyethylene glycol) was used as a pore-forming reagent to prepare a TiO₂-SiO₂ composite by mixing Ti(OPrⁱ)₄ with silica gel and then calcining [16].

In order to enhance the photocatalytic activity for H₂ evolution, a Pt-loaded TiO₂ (Pt/TiO₂) was used. A photo-deposition method developed by Kennedy III and Datye is the most popular method, which is performed by irradiating an aqueous slurry of TiO₂ in the presence of H_2PtCl_4 and ethanol [17]. Many researchers have used Pt/TiO_2 for sacrificial H₂ production [18–24]. Other noble metals such as Pd [25]. Au [26,27], and Au-MO_x (M = Ag, Cu, Ni) [28] have been loaded onto TiO₂. Among the noble metal-loaded TiO₂ photocatalysts (1% Ag, 1% Au, 1% Pt, and 0.5% Pt), Pt/TiO_2 (Pt = 1 wt%) was the most active for H₂ production [29]. Other metals such as Cu [30], Ir, Ru, Rh, Ni [18], NiO [31,32], and RuO₂ [33] have also been loaded onto TiO₂. Kang et al. [34], Sun et al. [35], and Bandara et al. [36] succeeded in enhancing the reactivity of TiO₂ by the deposition of CuO instead of Pt. Fluorinated Pt/TiO₂ was prepared by flame spray pyrolysis of a precursor solution containing Ti(OPrⁱ)₄, propanoic acid, K₂PtCl₆ and C₆F₆ [37].

Table 1 summarizes the results of sacrificial hydrogen production over the TiO_2 -based photocatalysts reported so far.

3. Alcoholic sacrificial agents (1)

Some typical alcoholic sacrificial agents are listed in Table 2. Early work on sacrificial H₂ production was performed in neat alcohols such as methanol (1a), ethanol (1b) and 2-propanol (1d) [38,39]. Now, most sacrificial H₂ production is performed in aqueous alcoholic solution. Aqueous solutions of 1a are the most typical sacrificial agents used to evaluate and optimize photocatalytic activity. 1a underwent oxidation up to CO₂ through the formation of formaldehyde and formic acid along with the formation of H₂ [19,40]. Kondarides et al. reported that the molar ratio of H₂ to CO₂ obtained from 1a was experimentally confirmed to be 3:1 [41]. The decomposition mechanism of 1a over Pt/ TiO₂ was discussed on the basis of a direct interaction of 1a with free or trapped holes in the TiO₂ [42], or via attack of the HO-radical Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx

Table 1

Sacrificial H₂ production over TiO₂-based photocatalysts.

Sacrificial agent	Photocatalyst	Ref.
Sugar	RuO ₂ /Pt/TiO ₂	[7]
CO	Pt/TiO ₂	[69]
Ethanol (1b)	Pt/TiO ₂	[45]
Glucose (3e)	Pt/TiO ₂	[89]
CO	Pt/TiO ₂	[68]
Carboxylic acid	Pt/TiO ₂	[8]
Carboxylic acid	$Pt/11O_2$	[9]
1d	$NI/11O_2$ ($NI=0.03-13.8 \text{ wt/}_0$) Pt/TiO_	[50]
2-Propanol-d _e	TiO ₂	[43]
1b, 1d	M/TiO_2 (M = Pd, Pt)	[39]
Ascorbic acid (3a), Benzoic acid	Pt/TiO ₂	[88]
1b	M/TiO ₂ (M= Au, Pt)	[46]
1d, lysine	Pt/TiO ₂	[64]
1b	Pt/TiO ₂	[17]
	Pd/TiO_2	[25]
1a, 1D Ovalia agid (2b)	$M/11O_2$ (M= Pt, Pd) Pt/TiO (Pt= 0.5 ut%)	[42]
	Pd/TiO_2 ($Pl = 0.5 \text{ wl/s}$)	[01]
Formic acid (2a). 2b	Pt/TiO_2	[82]
1a	Pd/TiO ₂	[23]
1a	Pt/TiO ₂	[6]
1a	Cu/TiO ₂ (Cu= 1.2 wt%)	[30]
1a	CuO/TiO_2 (CuO= 7 wt%)	[36]
1a	RuO ₂ /TiO ₂	[33]
Alcohols	M/TiO_2 (M = Pd, Pt, Rh)	[70]
$CICH_2CO_2H$, CI_2CHCO_2H	Pt/1102 Pt/TiO	[80]
1a 1b	Pt/TiO_2	[20]
1a. 1b. CH₃CO₂H (2d)	Pt/TiO_2 (Pt= 0.5 wt%)	[40]
1a	M/TiO_2 (M = Pd, Pt, Au)	[18]
1a	Cu/TiO ₂	[34]
Glycerol (1h)	Pt/TiO ₂ (Pt= 0.5 wt%)	[54]
1h	M/TiO_2 (M= Pd, Pt, Au)	[79]
1a	Pt/TiO_2 (Pt= 1.0 wt%)	[21]
1a 2a	Au/ HO ₂ SrTiO-	[27]
2a 1a. 1b. 1d	Pt/TiO ₂	[15]
1a	Au/TiO ₂	[26]
1h	Pt-N-TiO ₂	[55]
2d	Pt/TiO_2 (Pt= 1.0 wt%)	[87]
Glycolic acid (2c)	TiO_2 under O_2	[84]
In, 3e, Sucrose (3)	Heteroatom (N, B)-doped $Pt/11O_2$	[01]
1h	M/TiO_2 (M = 0.5 wt% Pd. 2.0 wt%	[59]
	Au)	
1a	Thin film TiO ₂ ^a	[119]
1a	M/TiO_2 (M= Ag, Au, Pt)	[29]
Carbohydrates	Pt/TiO ₂	[90]
3e	Pt/TiO_2 (Pt= 0.10 wt%)	[91]
1a 1d	$M/110_2$ (M= 0.5 Wt%Pt, 1.0 Wt% Au) Pt/TiO ₂ (Pt- 1.0 wt%)	[44] [49]
1h	Pt/TiO ₂	[57]
1h	CuO/TiO ₂	[60]
1h	Pt/TiO ₂ (Pt= 1.0 wt%)	[76]
C4, C3- polyols	Pd/TiO ₂ (Pd= 0.3 wt%)	[77]
2d	TiO ₂	[85]
Lactic acid (2e)	CdS/Pt/TiO2 [°]	[115]
1a Methylamine Dimothylamine	τι/ 110 ₂ ΤίΟ-	[40] [66]
1h. 3e. 3i	M/TiO_2 (M = Pd. Pt Au)	[92]
-,, -, 1h	Pt/TiO ₂	[62]
Ammonia	Pt/TiO ₂	[99]
Ammonia, Methylamine	Pt/TiO ₂	[65]
Xylose	Pt/TiO ₂	[93]
1b	Pt/TiO_2 (Pt= 0.06-1.0 wt%)	[47]
10 1b	$Pt/110_2$ Pt/TiO (Pt= 0.1_0.5+9/)	[56]
3e	M/TiO_2 (Ft= 0.1-0.5 Wt%) M/TiO_2 (1 wt% of M= Pd Au)	[80]
Polvols	Pt/TiO_2 (Pt= 1.0 wt%)	[51]
Monools	Pd/TiO ₂	[75]
1b	SiC-TiO ₂ ^a	[117]
1b	SiO ₂ -Pt/TiO ₂ ^a	[16]
1a	Cu/S-TiO2 ^a	[116]
	(continued on n	ехі раде)

Download English Version:

https://daneshyari.com/en/article/8112108

Download Persian Version:

https://daneshyari.com/article/8112108

Daneshyari.com