ARTICLE IN PRESS

Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces

G. Picotti^{a,b}, P. Borghesani^{a,*}, M.E. Cholette^a, G. Manzolini^b

^a Queensland University of Technology, Australia

^b Politecnico di Milano, Italy

ARTICLE INFO

Keywords: Concentrated solar power Soiling Reflectivity loss Dust deposition

ABSTRACT

This literature review deals with the well-known problem of soiling in solar plants, which it severely affects the energy yield of solar power plants. A loss of reflectivity due to soiling reduces the entire productivity of the plant by limiting the energy harvested (i.e. the incoming direct normal irradiance is not properly reflected towards the right focus). On the other hand, the costs of maintenance and cleaning of the collectors represent a significant component of the plant operational costs. Therefore, in this paper, a multi-disciplinary literature review is conducted with the aim of collecting existing models for the key processes, organising them into a 'dust life cycle'. This cycle is divided into four steps: Generation, Deposition, Adhesion, and Removal; with emphasis on the interaction between dust particles and solar collectors' surfaces. Generation deals with the loading of atmosphere with dust particles, deposition concerns the processes that actually bring airborne dust onto the collectors' surface, adhesion and removal represent the competing forces whose balance determine which particles remains adherent on the collectors and which are detached. The intent is to provide a complete framework for the development of a future physical model for the prediction and estimation of the actual soiling of the solar collectors, which engineers can implement in order to maximize the revenues of CSP plant, pushing towards more clean and sustainable energy production technologies.

1. Introduction

Concentrated Solar Power plants are considered one of the most suitable technologies for the future large-scale exploitation of solar energy. The main advantage of CSP is the adoption of thermal storage system which allows decoupling the electricity production from the hourly availability of solar energy (the so called dispatchability). To date, conventional thermal storage concepts are significantly cheaper than electric storages (i.e. batteries). The main limit of CSP system has traditionally been the higher Levelized Cost of Electricity (LCOE) when compared to the traditional fossil fuel-fired power plants and renewable energies [1]: the cost of electricity for CSP is in the range of 140–290 €/MWh, depending on the specific CSP technology considered, compared to 50–60€/MWh [2–5] for conventional fossil fuel power stations.

Most studies agree that plant operation and maintenance (O & M) represent a significant cost, accounting for 14–17% of the LCOE (including fixed O & M costs, 10–11%, and personnel and consumables, which account for 4–6%) [1,6,7]. In addition to its significance, the International Renewable Energy Agency [7] identifies O & M as a

key potential area for overall cost reduction.

The solar field consists of the most expensive components of the plant [8], with technologies and issues specific to the industry, while the other sections of the solar plant (i.e. Power Block) have similar issues to traditional plants [9]. According to the analysis carried out by Kutscher et al. (2010) at NREL (National Renewable Energy Laboratories, Colorado, USA) the O&M costs related to the Solar Field accounts for about 23% of the total O&M costs [6], which are substantially composed of labour, materials and consumables for the maintenance and cleaning of the collectors [1]. The majority of sites that are suitable for CSP installations are in arid or semi-arid areas, where the quantity of dust (or sand) carried by wind gusts and storms in atmosphere is significant and the water required for the standard cleaning methodologies is usually scarce [10,11] and expensive [10]. In parallel to direct O & M costs, many studies have indicated the loss of reflectance as one of the most important detrimental factors in CSP plant productivity [6,7]: reflectance can drop by about 10-15% points, making mirror cleaning fundamental to achieve good performance [8]. Bethea et al. (1983) identified the deposition of dust on mirror surfaces as a main reflectivity degrading factor [11], and more recent studies

E-mail address: p.borghesani@qut.edu.au (P. Borghesani).

http://dx.doi.org/10.1016/j.rser.2017.06.043

^{*} Corresponding author.

Received 12 April 2016; Received in revised form 15 February 2017; Accepted 16 June 2017 1364-0321/ © 2017 Elsevier Ltd. All rights reserved.

G. Picotti et al.

Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx

Nomenclature		M_t	fluid dynamic torque
		n _s	number of impacting saltators per unit area
а	contact radius	N_C	number of bumps in contact
a_0	contact radius at zero external force	Р	external force
$a_{0,e}$	contact radius at zero external force for elastic deformation	Q	electric charge
$a_{0,p}$	contact radius at zero external force for plastic deformation	Q_1	electric charge (sphere)
a_s	contact radius at separation	Q_h	horizontal saltation flux
A_C	area of the contact surface	r_1, r_2	radii of curvature
A_H	Hamaker constant	r_d, r_o, r_{in}	moment arms
A_{xy}	area projection	r_r	radius of asperity
C	capacitance	R_n	particle radius
C_{C}	correction factor for slip effect	S	separation distance
C_d	dust concentration in air	Sc	Schmidt number
C_D	drag coefficient for momentum	St	Stokes number
D_p	particle diameter	Т	temperature
$\overline{E_s}$	mean kinetic energy	u_*	friction velocity
f	correction factor for wall effect	u_{*t}	threshold friction velocity
.f.,	correction factor for wall effect	$U^{n,n}$	wind speed
$f_{\rm w}$	fraction of dust contained in V	v_d	deposition velocity
F	dust deposition flux	v _i	inertial deposition velocity
F_{12}	electrostatic force particle – surface	Vimp	mean saltator impact speed
F_{adh}	adhesion force	V _{rem}	removal velocity at the centroid of the particle
F_c	capillary force	V _s	terminal velocity (Stokes law)
F_{cp}	capillary pressure force	V	electric potential
F_d	drag force	V_r	removed volume
F_{ec}	standard Coulomb force	W _{ii}	work of adhesion
F_{ed}	dielectrophoretic force	y _{max}	height of asperity
F_{ei}	image force	Y	yield strength of material
F_{el}	electrostatic force	α	angle of liquid meniscus
F_{ep}	polarization force	α_{s}	sandblasting efficiency
F_{g}	gravitational force	β	bumps radius
F_{ip}	interparticle force	γ	surface tension
F_l	lift force	γcosα	vertical component of surface tension
F_Q	electrostatic force at constant charge	γ_i	interparticle forces parameter
F_{st}	surface tension force	ε_0	air permittivity
F_t	fluid dynamic drag force	$\overline{\epsilon_A}$	aerodynamic particle inertial coefficient
F_{ν}	vertical dust flux	ϵ_k	efficiency of kinetic energy conversion
F_V	electrostatic force at constant potential	θ	contact angle
F_{vdW}	van der Waals adhesion force	μ_{air}	air dynamic viscosity
H_0	equilibrium distance	$ u_0$	liquid molecular volume
k	Boltzmann constant	ρ_a	air density
k_2	dielectric constant (plane)	$ ho_b$	bulk density of soil
k_s	static friction coefficient	$ ho_p$	particle density
Κ	composite Young modulus	$ ho_r$	density of asperities
l	contact perimeter	$ au_z$	vertical turbulent flux of horizontal momentum
m_s	typical mass of saltators		

performed at Sandia and NREL laboratories predict a reduction of the LCOE of $2-2.5 \notin$ /MWh with an absolute improvement of 2% in mirror cleanliness [2,6].

Taken together, these estimates show that cleaning costs and productivity losses due to soiling have both a significant and comparable effect on the LCOE. An optimal cleaning schedule [6,7] therefore balances productivity losses and cleaning costs. In order to find the correct balance, a CSP O & M operator would highly benefit from deep understanding of soiling mechanisms, in order to assess and predict solar collectors' performance degradation and therefore properly define an economically optimal cleaning schedule. Direct measurements of reflectivity loss through optical reflectometers [12] already offer the possibility (in some countries at a non-negligible labour cost) of sampling the degradation of heliostat performance at regular time intervals; however the availability of a soiling model would have a series of benefits: (i) the model allows for a more informed selection of plant placement in the design phase, including the estimation of soiling losses and their impact on the future O & M costs in different possible plant locations; (ii) it would also improve operators' and investors' confidence in the plant O & M budget, which remains one of the most uncertain cost components in CSP (O&M); and (iii) the ability to simulate different scenarios (even with a certain degree of uncertainty on model parameters) would enable a qualitative (but detailed) understanding of the importance of weather parameters and plant design choices (e.g. geometry of the field) on the soiling of the collectors. This would in turn allow a better allocation and scheduling of cleaning resources and activities considering seasonal and weather-dependent trends. The coupling of recurring measurements of reflectivity/soiling with this model would provide further benefits: on one hand the measurement would provide a continuous calibration and refinement of the model, and on the other hand the model would largely improve the predictive capabilities of an otherwise simple measurement-based extrapolation of future soiling. This, in turn would allow the plant operators to extend with confidence the scheduling of future cleaning activities and analyse their field cleaning strategy under different weather scenarios.

Download English Version:

https://daneshyari.com/en/article/8112318

Download Persian Version:

https://daneshyari.com/article/8112318

Daneshyari.com