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a b s t r a c t

This paper surveys the results of estimating learning rate (LR) equations for the photovoltaic (PV) in-
dustry at the world level, and reports new results, placing emphasis on estimation issues, and other
shortcomings surveyed recently. The results are reported in detail, one relevant finding being that the
learning rate parameter might reach values substantially higher than those usually reported (18–20%).
This result, however, does not necessarily translate to other energies. The relevance of selecting the
estimation sample, dynamic specification, and omitted variables in simple standard specifications for the
estimated learning rate is highlighted. A solution for the LR in dynamic non stationary models is pre-
sented. The modeling of silicon prices is also discussed, and the concept of the total learning rate (TLR) is
introduced. Probability confidence intervals for the main estimated learning rate parameters are ana-
lyzed, and the time decomposition of PV module prices is discussed, highlighting the role of fossil energy
prices. It is found that the total LR might reach values above 27% with a 95% probability.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Applications of photovoltaic energy were implemented first in
space research in 1955. Since that time, the cost of PV modules and
cells downfall, and the associated growth in installed capacity
have been phenomenal, after being introduced in commercial
applications around 1977 – from 77 USDw. in 1977 to 0.55–0.65
USDw. at the end of 2014, and from 0.55 Mw global installed ca-
pacity in 1977 to nearly 180 Gw at the end of 2014; see, e.g., [1–6],
for the most up to date data. The decline in cost has been generally
attributed to the ‘learning by doing’ hypothesis [7].

This hypothesis was brought into mainstream economics by
Arrow [8], and simple statistical models relating costs and de-
ployment have been estimated in many industries since then.
Early critiques and discussion of this hypothesis and its applica-
tions can be found, for instance, in Ref. [9–13].

1.1. A review of significant allied research

Nemet [9] conducts a detailed study of the components that
possibly affect cost reductions in the PV industry, and concludes
that it is scale, as measured by plant size, cost efficiency improve-
ments, and silicon costs, what are the main drivers of cost reduc-
tions, rather than ‘learning-by-doing’. The study is based on a global
sample for the period 1975–2001, and implements an additive
model with seven potential explanatory factors. That is a large
number of variables for 27 observations in statistical terms, and in
spite of that, barely 60% of the cost change is explained. Interest-
ingly enough, the model is used to forecast the capacity required to
achieve a cost of 1.0 USD per w. in 2050, the result being 1.3 Tw of
capacity. The reality has been that just in 2013 and with barely
140 Gw. (¼0.14 Tw), the hallmark 0.75 USD w. was reached. Fer-
ioli [10] also considers the cost component approach, adopting an
additive model for total costs – note that a multiplicative model is
also a valid option; see Section A.2 in the Appendix. This model is
useful to show limitations to the simple cost reduction ‘law’ im-
posed by several factors, technological, economic or otherwise – a
case in point being the raw materials requirements, steel and ce-
ment, of wind turbines. Neij [11] stresses the point that economic
costs are just one of several aspects that authorities should take into
account when devising policy support measures – pollution miti-
gation, and a host of other externalities. Albrecht [12] also notes
that cost is only one among several properties to be considered. In
fact, and from a CAPM energy portfolio optimization point of view
renewable energies, PV in particular, once the best locations for
wind energy have been developed, would decrease the aggregate
price volatility caused by prices of fossil energy sources without
reducing profitability significantly – the analysis is conducted for
the year 2025. La Tour et al. [14] include explanatory variables,
other than capacity, in the learning rate equation. They find that
silicon prices are relevant and build and estimate a two-factor ex-
planatory equation from there. Although the amount of silicon re-
quired to produce PV cells has decreased impressively in the last
years, and silicon dedicated factories have come into the production
line starting in 2008 – see for e.g. [15] –, silicon prices are still a
relevant PV module cost factor – see Section 3.2. They also find that
other variables, notably scale and R&D, are very highly correlated
with capacity, implying that this last driver may adequately explain
the overall aggregate effect.

Efforts to collect and summarize this literature, and the re-
search results of independent authors, have also been conducted.
A survey of the early literature was conducted by Dutton et al. [16],
who surveyed 100 empirical and theoretical studies of progress
functions in industrial engineering, economics and management.
These models were fairly simple, partly because the econometric
techniques were not well developed, and also because computing

facilities were not generally available. More recent surveys can be
found in [14,17,18]. For the PV industry, an early survey is Neij [11].
An up to date survey for several electricity supply technologies is
[19]. Although this research claims that the variability of results is
too wide to be of practical use for policy guidance, with potentially
costly and misleading implications, the results for the PV are not in
fact so disparate, and can be traced easily to the differences in the
sample period, the geographical area, or the explanatory variables
employed. While those points must certainly be addressed, the
overwhelming negative relationship between costs and capacity at
the global level, however variable it may be, is undeniable.

Recently, Nordhaus [20], has questioned the validity of this
hypothesis and its estimation counterparts. First, he considers that
‘learning by practice’, might be alternatively explained by exo-
genous technical progress. Second, he notes the over simplified
statistical models implemented in practice, and emphasizes that
small changes in the learning parameter estimate may yield large
changes in simulations. In the same line [21] reports estimates of a
panel of 15 world firms over the period 2005–2012, finding that
silicon prices and efficiency explain costs, while the learning rate
variable turns out insignificant statistically – but note that this
period includes the years 2005–2008, when the long standing
downward PV cost trend stalled, and even broke; besides, the
learning process in the PV is global, and any disaggregated ap-
proach is likely to underestimate it, as discussed in Section 2.3. In a
more comprehensive accounting and review of the model, its
foundations, and available estimates for the PV case, a panel of
experts identified the main open questions – Wiesenthal et al. [22]
– which can be organized as follows: 1) the underpinnings of the
concept of ‘learning-by-doing’, the relevance of technical progress,
and omitted variables closely related to deployment and learning,
2) practical specifications problems not sufficiently addressed in
empirical estimations, such as, one, two or multifactor learning
curves, functional form, sample choice, dynamics, possible data
biases, reverse causation, simultaneity, etc.

Regarding point 2), there has been some work that should be
mentioned: for example La Tour et al. [14], and other researchers
have considered other explanatory variables. Zheng and Kammen
[23], again tackle the issue of R&D on the estimation of the LR, and
conclude that the oversupply of PV modules, and the decreased
cost trend is unsustainable simply by increasing capacity deployed
– the study was published in January 2014. They argue that policy
support should focus on cost reducing R&D, so that PV technology
could become competitive in 5–7 years. The empirical results are
restricted to a sample of firms in the period 2000–2012. But to
properly estimate the LR, a long span of observations is required,
and besides, they still derive a sizable value for the LR. It has to be
concluded that the empirical support for their implications is
somewhat doubtful, and that the latest experience during 2014–
2015 confirms the validity of the LR hypothesis. Yeh and Rubin [13]
also consider this question, arguing that the specified models in
practice have several deficiencies, in particular the functional form
and the omission of key variables like R&D expenditures. They
conclude by suggesting an inverted S shaped formulation for the
LR equation as a function of capacity, and underlining the un-
certainties in the estimated values, that should be accounted for in
economic policy and simulations – these issues are also discussed
in Ref. [24]; see Section 2.3.

The discussion about the underpinnings of the concept of
‘learning-by-doing’ – point 1) –, and the relevance of technical
progress is reviewed next.

1.2. Technical progress, deployment, and costs reduction

It is frequently assumed that the spectacular and continued
cost decline of PV modules in approximately the last 40 years, has
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