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A B S T R A C T

In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic

artery were performed using the Cosserat continuum model. The large-amplitude

oscillatory shear deformation model was used to quantify the nonlinear viscoelastic

response of blood flow. The finite difference method was used to solve the governing

equations, and the particle swarm optimization algorithm was utilized to identify the

non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous

experimental results.
c⃝ 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of blood in the arteries is one of the
most important problems in biomechanical engineering.
Accordingly, various analytical, numerical, and experimental
studies of blood behavior have been performed (Monson
et al., 2011; Rossmann, 2010). The investigation of blood
flow parameters has a long historical background, even
engaging such pioneer scientists as Aristotle, and the
nonlinear behavior of blood was unknown until the second
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half of the last century (Schneck, 1990). From a rheological
perspective, blood is a water-based solution comprised of
organic and inorganic substances and various suspended
cells, including mainly red cells. These properties strongly
affect the dynamics of blood flow and render blood as a non-
Newtonian fluid (Silber et al., 1998).

The fluctuating state and non-Newtonian characteristics
of blood flow as well as the flexibility of the arterial
walls make the theoretical analysis of blood very difficult.
Experimental studies have revealed that the blood’s viscosity
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Nomenclature

V Velocity vector
γv Non-Newtonian coefficient
ω Rotation vector
γ Strain
δij Kronecker delta
γ̇ Strain rate
Γij Permutation tensor
σ(t) Stress response
εij Cosserat deformation tensor
σ′(t) Elastic stress
κij Torsion-curvature tensor
σ′′(t) Viscous stress
tij Nonsymmetric force-stress tensor
Tn(x) nth-order Chebyshev polynomial of the first

kind
mij Nonsymmetric couple stress tensor
en Elastic Chebyshev coefficient
ρ Density
vn Viscous Chebyshev coefficient
J Microinertia
L Length scale
fi Body force per unit mass

Subscripts

li Body couple per unit mass
z Axial
π Thermodynamic pressure
r Radial
R Radius of artery
θ Circumferential
kv Non-Newtonian coefficient
i.j, k Coordinate axis
αv Non-Newtonian coefficient
βv Non-Newtonian coefficient.

decreases with an increase in shear rate, and that blood
has a small yield stress. Constitutive models have been
proposed for blood as a non-Newtonian fluid by several
researchers. Casson proposed a model that later was applied
successfully for the analysis of blood flow byMerill and others
(Walburn and Schneck, 1976; Hodis and Zamir, in press).
Later, the biviscosity model was proposed, which assumed
that blood behaves as a non-Newtonian fluid under small
shear rates and as a Newtonian fluid under large shear
rates. This latter model was used successfully by Nakamura
and Sawada (1988) and Kamali and Moayeri (1999). Because
of the considerable mechanical properties embedded in
the blood’s microstructure, simple material theories cannot
solve the problem of blood flow. Use of the more sensitive
continuum theories, such as nonlocal, micropolar, multipolar,
and gradient theories (Silber et al., 1998; Eringen, 2001; Atefi
and Moosaie, 2005) with higher kinematic statuses, therefore
are more appropriate.

The idea a material body endowed with both translational
and rotational degrees of freedom stems from the work of the
Cosserate and Cosserate (1909). In this so-called “micropolar

continuum”, the effects of couples and forces are considered
independently of each other (Forest, 2001). Fluids in this
continuum can support the couple stress, body couple, and
nonsymmetric stress tensor. The fluids possess a rotation
field that is independent of the velocity field (i.e., is no longer
equal to half of the curl of the velocity vector field). Because
of the assumption of infinitesimal rotations, the rotation field
can be treated as a vector field. Therefore, this theory has 2
independent kinematic variables: the velocity vector V and
the spin or microrotation vector ω.

Blood displays complex rheological behaviors and con-
tains cells that exhibit spinning movements that affect the
blood flow’s velocity. Accordingly, we propose the use of the
Cosserat continuum model, which considers the effects of ro-
tational movement and can describe complex fluid flows such
as non-Newtonian and turbulent flows (Eringen, 2001; Atefi
and Moosaie, 2005; Moosaie and Atefi, 2007; Alexandru, 1989),
as an appropriate approach for blood flow simulation.

2. Equation of motion in the Cosserat contin-
uum

In the Cosserat continuum, both the velocity and rotation
vector field are considered at any material point. To
develop the relationship between the current states of the
orthonormal directions attached to each material point and
the initial state, we define the so-called Cossert microrotation
tensor Rij as

Rij = δij − Γijkωk (1)

where δij and Γijk are the Kronecker delta and permutation
tensor, respectively. The associated Cosserat deformation
tensor εij and torsion-curvature tensor kij are written as

εij = Vj,i − Γijkωk (2)

κij = ωj,i (3)

where a comma denotes partial differentiation. In the
absence of the rotation vector ω, the classical continuum
mechanics is recovered.

It is assumed that the transfer of an interaction between
2 particles of the continuum through a surface element nids
occurs by means of a traction vector tids and a moment
vector mids. Surface forces and couples are represented by
the generally nonsymmetric force-stress and couple-stress
tensors tij and mij, respectively. The balance of the linear and
angular momentums requires that the following equations be
satisfied:

tij,j + fi = ρ
DVi
Dt

(4)

mij,j + Γijktik + li = J
Dωi
Dt

(5)

where ρ, J, fi and li are the mass density, microinertia,
body force per unit mass, and body couple per unit mass,
respectively. D/Dt denotes the material time derivative.

The linear constitutive equations are used to describe
the material behavior. These equations can be considered
to be generalization of Newtonian fluids in the classical
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