Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review

Paramvir Singh, Varun^{*}, S.R. Chauhan

Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, HP, India

ARTICLE INFO

ABSTRACT

Article history: Received 8 November 2015 Received in revised form 8 April 2016 Accepted 16 May 2016 Available online 30 May 2016

Keywords: Emissions Carbonyl compounds Aromatic compounds Biodiesel The depleting natural resources, primarily petroleum that has been the backbone of fuel industry is finding itself at loss to answer the questions of our future needs. This has led researchers to venture into the area of biodiesel since it is the next best contender to replace diesel in the immediate future. This is so because biodiesel has characteristics not only similar to diesel but also better in many respects, like biodegradability, renewability and better emission characteristics. Many authors have studied regulated emission characteristics. The results are in favour of biodiesels in terms of carbon monoxide, smoke, hydrocarbons (*HC*) and particulate matter (*PM*). The study in the area of unregulated emissions is, however, limited and inconsistent, even though they are considered carcinogenic and mutagenic in nature. Hence, for a better understanding of biodiesel and their emissions, it is necessary to examine their unregulated emissions as well. This paper consolidates and analyses data regarding carbonyl, polyaromatic hydrocarbons (*PAHs*) and their oxy and nitro derivatives of various biodiesels derived from various feedstock and their diesel and alcohol blends. The emission trends have also been studied for various parameters like engine speed, engine load, driving cycle etc.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Intro	duction	269			
2.	Unreg	Unregulated emissions from different feedstock				
	2.1.	Unregulated emissions from biodiesel and its blends	271			
		2.1.1. Unregulated emissions from WCO biodiesel	. 283			
	2.2.	Unregulated emissions from alcohol blended fuel	286			
	2.3.	Unregulated emissions from other feedstock	287			
3. Discussion on unregulated emissions						
	3.1.	Carbonyl compounds	288			
	3.2.	Aromatic and polyaromatic compounds	289			
4.	4. Conclusions					
References						

1. Introduction

Due to hike in oil prices, increasing demand of energy, limited availability of resources for fossil fuels, impact on environment etc. forced the researchers towards a fuel, which have the capability of fulfilment global energy demand as well as characteristics like technical feasibility, domestic availability and environmental acceptability. The main consumer of energy is transport sector and primarily based on diesel. The cost of diesel fuel increases as demand increases which becomes a great setback to economy. To overcome these problems from fossil fuels, it is necessary to find out the alternative fuel. Therefore, the researchers focussed on the straight vegetable oil and its derivatives like biodiesel. Biodiesel is found to be the most important alternative fuel used in conventional diesel engines, as its characteristics are similar to

^{*} Corresponding author. Tel.: +91 1972 254742; fax: +91 1972 223834. *E-mail address:* varun7go@gmail.com (Varun).

Nomen	clature	FL	Fluoranthene
		Flu	Fluorine
ACE	Acetaldehyde	FOR	Formaldehyde
AcP	Acenaphthene	F-T	Fischer-Tropsch
AcPv	Acenaphthylene	GEM	Glycerol based ethyl mixture
ACR	Acrolein	HC	Hydrocarbon
AM	Artemis motorway	HEX	Hexaldehyde
AN	Animal fat	HMW	High molecular weight
AnT	Anthracene	LMW	Low molecular weight
AR	Artemis road	MAH	Monocyclic aromatic hydrocarbon
ATN	Acetone	MEK	Methyl ethyl ketone
AU	Artemis Urban	MET	Methacrolein
BaA	benzo[a]anthracene	MMW	Medium molecular weight
BaP	benzo[a]pyrene	NaP	Naphthalene
BbF	benzo[b]fluoranthene	NEDC	New European driving cycle
BE	Biodiesel-ethanol	NO_x	Nitrogen oxides
BENZ	Benzaldehyde	PA	Phenanthrene
BghiP	benzo[ghi]perylene	PAH	Polyaromatic hydrocarbons
BkF	benzo[k]fluoranthene	PM	Particulate matter
BMEP	brake mean effective pressure, N/m ²	PME	Palm based methyl ester
BTDC	before top dead centre	ppbv	Propionaldehyde
BTX	Benzene, toluene and xylene	PRO	Propionaldehyde
BUTD	Butadiene	Pyr	Pyrene
BUTY	Butyraldehyde	RME	Rapeseed methyl ester
CHR	Chrysene	SME	Soybean methyl ester
CR	Compression ratio	SOF	Soluble organic fraction
CRO	Crotonaldehyde	SUME	Sunflower methyl ester
DBA	dibenzo[a,h]anthracene	tMBEN	tri-methyl benzene
dBENZ	2,5-dimethyl benzaldehyde	TPO	Tyre pyrolysis oil
DI	Direct injection	TOL	Tolualdehyde
DME	dimethyl ether	UFOME	used frying oil based methyl ester
DOC	Diesel oxidation catalyst	ULSD	Ultra low sulphur diesel
DPF	Diesel particulate filter	VAL	Valeraldehyde
eBEN	ethyl benzene	WCO	Waste cooking oil

conventional diesel [1,2]. A long fatty acid chain of methyl/ethyl ester extracted from organic products like animal fat [3–6], waste cooking oil [7–12] vegetable oil [13–16] is called biodiesel. Some of the most popular methods to prepare biodiesel are micro-emulsions, thermal cracking (pyrolysis), trans-esterification [17–20] etc. The concept of biodiesel dates back to the 19th century; wherein inventor Rudolf Christian Karl Diesel ran an engine with peanut oil only [2]. Subsequently, many more oils were discovered to replace diesel from compression ignition (CI) engines. More than 350 oilseeds crops have been identified that can be used to prepare biodiesel [26,108]. A very important advantage of biodiesel is that it is eco-friendly. Biodiesel is better lubricant as compared to conventional fuels [21-23]. However, deposit formation, material degradation (plugging of filters) depends mainly on their degradability, impurities (glycerol content), cold flow properties, long term endurance tests and ether quality specification [24,25] need to be studied. There are three categories of sources from which biodiesel can be obtained [26], i.e., First generation (edible oils), second generation (non-edible) and third generation (microalgae).

Today, air pollution is a major issue as the main pollutants in today's environment are internal combustion (IC) engine exhausts [27] and hence, the automobile industries are focused on developing cleaner transport systems that give at least the same amount of efficiency as conventional fuels and do not cause any more pollution than what is already present. This finally leads us to the study of emission characteristics of biodiesels, since they are the single most important contender in the area of future fuels. A lot of literature is available on regulated emissions of biodiesels and its diesel blends [28-31]. In general, a large number of authors found remarkable reduction in regulated emissions like HC, smoke, *PM, CO*, etc., except nitrogen oxide (NO_x) , by using biodiesel and its diesel blends [3,32-35]. NO_x emissions have a very different behaviour and the reasons associated for the same are operating conditions, automobile technology and fuel properties [36,37]. Apart from regulated tail pipe emissions of diesel engine. United States Environmental Protection Agency (US EPA) has considered the unregulated emissions such as carbonyls, PAHs etc. to be of toxicological consequence [38]. Some other organisations such as World Health Organisation (WHO), National Institute for Occupational Safety and Health (NIOSH), US National Toxicology Programme and International Agency for Research on Cancer (IARC) have also classified diesel exhausts as hazardous for human and environmental health [39-41]. The different categories under which the unregulated emissions have been grouped are: carbonyl compounds, mono-aromatic hydrocarbons (MAHs), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, oxy-PAHs, etc. Eleven compounds were categorised by EPA as toxic for human and environmental health: 1.3 butadiene. ACE. ACR. benzene. ethyl benzene (eBEN), formaldehyde, n-hexane, naphthalene (NAP), toluene, xylene and styrene.

Carbonyl compounds are a category of organic compounds that contain the functional group > C=O in their structure. They come under the category of toxic pollutants and are responsible for smog formation. They are also found in the atmosphere as a part of the ozone cycle. The most abundant carbonyls are *FOR*, *ACE* and

Download English Version:

https://daneshyari.com/en/article/8113297

Download Persian Version:

https://daneshyari.com/article/8113297

Daneshyari.com