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a b s t r a c t

Wind resource assessment is fundamental when selecting a site for wind energy projects. Wind is
influenced by several environmental factors and understanding its spatial variability is key in deter-
mining the economic viability of a site. Numerical wind flow models, which solve physical equations that
govern air flows, are the industry standard for wind resource assessment. These methods have been
proven over the years to be able to estimate the wind resource with a relatively high accuracy. However,
measuring stations, which provide the starting data for every wind estimation, are often located at some
distance from each other, in some cases tens of kilometres or more. This adds an unavoidable amount of
uncertainty to the estimations, which can be difficult and time consuming to calculate with numerical
wind flow models. For this reason, even though there are ways of computing the overall error of the
estimations, methods based on physics fail to provide planners with detailed spatial representations of
the uncertainty pattern. In this paper we introduce a statistical method for estimating the wind resource,
based on statistical learning. In particular, we present an approach based on ensembles of regression
trees, to estimate the wind speed and direction distributions continuously over the United Kingdom
(UK), and provide planners with a detailed account of the spatial pattern of the wind map uncertainty.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Wind energy plays a key role in reducing the level of CO2

emissions required to mitigate the worst effects of climate change.
By 2020 the UK has pledged to produce 30% of its electricity from
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renewable sources [1], compared to 17.8% today [2]. With the
depletion of conventional sources and the increase of global
warming Renewable Energy Sources (RES) have attracted the
interest of investors. Among all RES, wind energy has had a sub-
stantial growth over the last five years, reaching a global installed
capacity of around 370 GW (gigawatts) at the end of 2014 with an
overall turnover of 277 billion Euros [3]. Moreover, according to
the latest statistics [4], electricity produced from onshore wind
farms is becoming cheaper than other traditional sources of elec-
tricity such as nuclear, coal, and combined gas cycle. In the United
States the unsubsidized levelized cost of 1 MWh (megawatthour)
produced by onshore wind is already lower or equal to all other
sources of electricity.

When selecting a site for investing in a wind energy project,
wind resource assessment plays a fundamental role. Meteor-
ological stations collect climate data, but they are sparsely located
and therefore do not provide the full data coverage necessary for
the optimal placement of wind farms. In order to obtain an esti-
mate of the wind characteristics in unknown locations, a way to
model the wind field is required. In the last decades, multiple
models have been developed for this scope and the research in the
field has focused on two main directions: numerical wind flow
models (i.e. methods based on physics, also referred to as physical
methods) and statistical methods. Physical methods model the
wind field by solving physical equation, such as the equations that
govern the mass and momentum-conservation laws, or
computational-fluids dynamic models. Statistical methods on the
contrary, estimate the wind resource by correlating past observa-
tions with environmental data, such as elevation, slope, and
temperature. Both methods have been widely used in literature, at
various scales and with different level of accuracy. Below we
present an extensive overview of the literature to provide the
reader with a classification of wind resource assessment methods.

1.1. Numerical wind flow models

These methods estimate the wind resource by solving some of
the equations that govern the motion of air in the atmosphere.
Numerical wind flow models can be divided by level of sophisti-
cation or complexity [5] and partly also according to the scale at
which they operate. In wind resource assessment we generally
refer to three main scales of operation: macro-scale (known as
synoptic scale with a resolution in the order of 2000 km or larger),
meso-scale (few kilometres to thousands kilometres) and micro-
scale (hundreds of meters to few kilometres). Synoptic scale
models study large-scale phenomena, such as large depression
fronts, which are mostly driven by Coriolis force and pressure
gradient. These methods will not be treated in this review.

The first level of sophistication is occupied by mass-consistent
models, such as NOABL (Numerical Objective Analysis Boundary
Layer), developed in the ‘70 s in the US [6,7]. These methods solve
only the equation of conservation of mass, which when applied to
the atmosphere states that if a wind mass is forced over a slope it
must accelerate so that the same volume of air passes in any given
region [5]. Mass-consistent methods are still widely used for
generating both meso-scale and micro-scale wind speed maps. Of
particular interest is the work carried out in the UK by the UK
Energy Technology Support Unit (ETSU) for the creation of a long-
term wind speed database [8]. They started from overlapping grids
of 100 km of resolution, with data collected from 56 stations for a
time period of 10 years, from 1975 to 1984. They then applied
NOABL to downscale the map at 1 km of resolution at three
heights: 10 m, 25 m and 45 m. To the best of our knowledge
nowhere in literature there is a mention of the computational time
needed to create the wind map mentioned above. However, since
these long-term databases are updated very infrequently, the time

needed to create them is somewhat not influential in the planning
process for newwind farms. For micro-scaling these data would be
used as look-up tables and their estimates would just be further
downscaled, thus minimizing computational time. Regarding its
accuracy, the technical report from Best et al. [9], created for the
MET Office (UK Meteorological Office), shows a plot of wind esti-
mations against weather observations from which the overall
deviation of the estimates seems to be around 2–5 m/s. Moreover,
another report from the MET Office [10] mentioned the bias of the
estimates (i.e. the mean of the residuals’ distribution) from this
method as equal to 1 m/s.

The second level of sophistication is occupied by models,
developed in the ‘80 s and ‘90 s, to include not only mass-con-
servation, but also momentum-conservation. These models are
based on the theory advanced by Jackson and Hunt [11] and work
by solving a linearized form of the Navier-Stokes equation gov-
erning fluid flows. Because of this characteristic these models are
often referred to as linear wind flow models. Probably the most
famous linear model is WaSP (Wind Atlas Analysis and Application
Program [12]), developed by Risoe National Laboratory of Den-
mark and used to create the EuropeanWind Atlas in 1989 [13]. The
Jackson-Hunt theory assumes that topography causes small per-
turbations in an otherwise constant wind flow, this allows the
equations to be solved efficiently [5]. WaSP incorporates techni-
ques to account for obstacles and roughness changes, even though
it is not equipped to handle complex terrains [5]. Despite its
known limitations, WaSP has been and remains very popular in
the industry and has been used to generate various wind speed
maps globally [14–17]. Regarding the scale of analysis, WaSP can
be used for both meso- and micro-scale modelling. In the late ‘90 s
for example, it was coupled with the Karlsruhe Atmospheric
Mesoscale Model (KAMM) [18], to account for topography and
create the first example of meso-micro scale model of the wind
resource [19].

In alternative to linear models, the next level of sophistication
consists of methods able to solve the full spectrum of equations of
computational fluid dynamics (CFD) applied to air flows. These
models take into account mass and momentum conservation, plus
the effect of turbulence created by the interaction between wind
and complex terrains. Examples of these model are based on
Reynolds Average Navier Stokes (RANS) turbulence models [20,
21], and the Large-Eddy-Simulation (LES) model [22–25]. Addi-
tional information are provided in the comprehensive review of
these models applied to fine-scale computation of wind flows
carried out by Ayotte [26].

The final level of sophistication is occupied by Mesoscale
Numerical Weather Prediction (NWP) Models [5]. These methods
have been developed for weather forecasting; they include the full
sets CFD equations, but they also include schemes to take into
account: solar and infrared radiations, a soil model, clouds
microphysics and convection. Examples of such models are: the
Regional Atmospheric Modeling System (RAMS, http://rams.
atmos.colostate.edu/rams-description.html), Skiron (http://fore-
cast.uoa.gr/index.php), Weather Research and Forecasting (WRF,
http://www.wrf-model.org/index.php), MM5 (http://www2.
mmm.ucar.edu/mm5/overview.html), Consortium for Small scale
Modeling COSMO (http://cosmo-model.cscs.ch/). These methods
were developed to forecast weather patterns, based on the current
situation. They are applied at the local and global scale, starting
from direct weather observations from stations, radiosondes or
satellite data. Due to enormous amount of equations to solve
simultaneously these methods require substantial amount of
computational resources to be used successfully, and cannot be
used for micro-scale modelling with the current generation of
supercomputers. For this reason, numerical approximations is
often applied. NWP divide the atmosphere in 3D volumes
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