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a b s t r a c t

The exponential growth of biodiesel industries all around the world has produced a large amount of
glycerol as a byproduct, which must be valorized for the sustainability of the biodiesel industry. Keta-
lization of glycerol with acetone to synthesize solketal-a potential fuel additive is one of the most pro-
mising routes for valorization of glycerol. In this article, state-of-the-art of glycerol ketalization is
reviewed, focusing on innovative and potential technologies towards sustainable production of solketal.
The glycerol ketalization processes developed in both batch and continuous reactors and performance of
some typical catalysts are compared. The mechanisms for the acid-catalyzed conversion of glycerol into
solketal are presented. The main operation issues related to catalytic conversion of crude glycerol in a
continuous-flow process and the direct use of crude glycerol are discussed.
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1. Introduction

The depletion of non-renewable fossil fuels and their envir-
onmental impacts are among the main factors that have drawn
increasing attention towards biofuels, mainly bio-ethanol and
biodiesel. Biodiesel is mainly produced by the transesterification of
animal fats or vegetable oils (triglyceride) with a mono-alcohol
(usually methanol) in presence of alkalies as shown below
(Scheme 1) [1–3]. This biodiesel can be used directly or after
blending with fossil-based diesel fuel.

In the transesterification process, glycerol is formed as the
principal byproduct. It is estimated that 10 wt% amount crude
glycerol is generated for each amount of biodiesel produced [4].
With the continued increase in the production of biodiesel, an
excessive amount of glycerol is expected to accumulate. It is pre-
dicted that by 2020 the global production of glycerol will be 41.9
billion liters [5]. The crude glycerol produced form biodiesel
industry contains impurities such as water, inorganic salts (sodium
or potassium salts), methanol, fatty acids, and esters etc. [6–8],
hence it is commonly treated as the waste stream of biodiesel
industry. It is economically viable for the large biodiesel producers
to refine this waste stream for the industrial applications, whereas
for small biodiesel producers, they are unable to leverage the
treatment costs and instead they pay for glycerol removal. Due to
the excessive amount generated, the current crude glycerol price is
as low as 0.04–0.09 $/lb [9]. The predicted rapid growth of bio-
diesel production will further lower the glycerol price once it
enters into market [10]. Therefore, new and economical ways of
using glycerol must be developed to increase the value of crude
glycerol to enhance the sustainability of biodiesel industries.

That being said, glycerol has diverse applications in different
fields especially in the pharmaceuticals, food, cosmetics, and
polymer industries [11–13]. The versatility of glycerol is mainly
due to its physical and chemical properties. The presence of three
hydroxyl groups in glycerol makes it completely soluble in water
and alcohols whereas insoluble in hydrocarbons. Furthermore, the
inter and intramolecular hydrogen bonds due to the presence of
hydroxyl groups lead to the high boiling point of glycerol (290 °C)
at ambient pressure and high viscosity (1.412 Pa s) at room tem-
perature [14].

On the other hand, catalytic and biological conversion of gly-
cerol offer a tremendous potential to produce value-added che-
micals such as propanediols, acrolein, dihydroxyacetone, glyceric
acid, tartonic acid, epichlorohydrin, hydrogen, syngas, ethers,
esters, etc. [15–21]. Therefore glycerol can be considered as a
platform chemical. A selection of these possibilities were reviewed
recently [12,22,23]. Production of cyclic acetals and ketals from
glycerol with aldehydes and ketones, respectively, is believed to be
one of the most promising glycerol applications as fuel/chemical
intermediates [24–27].

The ketalization reaction between glycerol and acetone is given
in Scheme 2, where solketal (2, 2-dimethyl-1, 3-dioxolane-4-
methanol or 1,2-isopropylideneglycerol) is formed as the con-
densation product over an acid catalyst. Solketal can be used as a
fuel additive to reduce the particulate emission and to improve the
cold flow properties of liquid transportation fuels [28]. It helps to
reduce the gum formation, improves the oxidation stability, and
enhances the octane number when added to gasoline [29]. Mak-
simov et al. reported its use as a versatile solvent and a plasticizer
in the polymer industry and a solubilizing and suspending agent in
pharmaceutical preparations [30].

This review paper mainly over-views the state-of-the-art of the
sustainable production of solketal by catalytic reaction of glycerol
with acetone. Different types of processes and catalysts developed
and their performances are compared. Fundamentals of reaction
mechanisms for the acid-catalyzed conversion of glycerol into
solketal are presented. The main operation issues related to cata-
lytic conversion of crude glycerol in a continuous-flow process and
the direct use of crude glycerol are discussed.

The review article aims to (1) introduce various applications of
solketal in different industries including polymer, pharmaceutical
and cosmetics, food, and fuel industries, (2) highlight some major
challenges for industrial production of solketal, and (3) demon-
strates promise of some new processes for utilization of crude
glycerol as feedstock for the production of solketal.

2. Recent progress in the reaction processes

2.1. Historical context

It is well-known that ketals can be prepared by the reaction of
an alcohol with a ketone in presence of an acid catalyst. Based on
the public sources of literature, Fischer first prepared the solketal
from acetone and glycerol in a batch rector catalyzed by hydrogen
chloride [31]. 25 years later Fischer and Pfahler reported ketali-
zation of glycerol using hydrogen chloride and anhydrous sodium
sulfate in a similar process [32]. Later, in 1948, Renoll and New-
mann published their work on the synthesis of solketal in a three
neck flask with reflux equipped with a sealed mechanical stirrer
[33]. The authors chose petroleum ether as the reaction medium
and p-toluenesulfonic acid (pTSA) monohydrate as the catalyst to
achieve a high yield of solketal (87–90%). After the reaction, the
products were separated by distillation under reduced pressure;
however the reaction time was very long (21–36 h). These early
studies on the synthesis of solketal remained without further
advances until the end of the 20th century when massive amount
of cheap glycerol was produced from biodiesel industry.

Scheme 1. Glycerol as byproduct during biodiesel production.
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Scheme 2. Ketalization reaction between glycerol and acetone.
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