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achieve, and determines the thermal energy storage technology that must be used. This paper reviews
current and future liquid, gas, supercritical, two-phase and particulate HTFs. Thermophysical properties
are presented as well as correlations to determine the receiver tube-HTF heat transfer coefficients.
Variations of convective heat transfer coefficients as a function of temperature are illustrated for all
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1. Introduction
1.1. Concentrating solar technologies

With the increasing interest in sustainable power production and
the need to reduce CO, emissions, renewable energy sources are
becoming an important element in the world energy balance. Among
them are the Concentrated Solar Power (CSP) technologies (parabolic
trough, linear Fresnel reflector, parabolic dish and central tower) are
gaining importance [1-8]. They work by transforming solar radiation
into heat used to trigger chemical reactions or produce electricity. A
solar thermal electricity power plant consists of four major compo-
nents: the solar concentrating system, the receiver, the thermal energy
storage and the thermodynamic cycle coupled with the electric gen-
erator. Each CST has its own reflector configuration to concentrate the
sunrays onto a line or a central point, where the receiver is located.
The receivers can be different in shape, size or composition, but their
common purpose is to absorb the concentrated solar radiation and
transmit it to a heat transfer fluid (HTF). The heat is finally transmitted
to the working fluid of the thermal block that converts the heat into
mechanical energy. Again, various thermodynamic cycles are available,
each with its own range of working temperature. They are mainly
Rankine cycles [9] (with saturated or super-heated steam) for large
power plants, Brayton [10] and Stirling [11] cycles for medium and
small-scale facilities. The type of thermodynamic cycle puts a con-
straint on the type of HTF to use. At the same time, the HTF's working
conditions limits result in constraints on the solar receiver.

The overall thermal efficiency of a solar thermal power plant
highly depends on the concentrating system and on the receiver. The
solar concentrating systems can be divided in two main categories:
linear and point focusing. There exist two types of concentrators for
linear systems: the parabolic trough [12-15] and the linear Fresnel
[15,16]. The receiver is an evacuated tube for the first and a tube
bundle for the second. Linear concentrators are characterized by low
average concentration ratios, from 30 to 100. High concentration
ratios, from 300 to 1500 and more, are achieved by point focusing

concentrators. Point focusing systems concentrate all the sun's rays
onto a central spot located at the focal point of the parabola, for
parabolic dish systems, and at the top of the tower for central tower
systems. The technology options for receivers adapted to point
focusing concentrating systems are wider than for linear ones. Various
types of central solar receivers exist and have been assessed [1,17].
Volumetric receivers [18] are conceived to let the concentrated solar
radiation enter the absorber, which in this case is a porous media
made of metallic wires or ceramic foam. In this way, the whole solid
volume gets heated up and the external temperature is lower than it is
for surface absorbers, which reduces the infrared radiation heat losses.
The porous structure acts as a convective heat exchanger where the
heat transfer fluid, mainly air, receives heat from the solid absorber.
The big challenges of this kind of receiver are unstable flow and
heterogeneous heating caused by changes of the temperature-
dependent working fluid properties, in particular viscosity and den-
sity, which may lead to overheating and local failures in the receiver
material. Tubular receivers were designed for either gas or fluid HTFs.
For the first option, the main challenge is to overcome the limited
convection heat transfer between the tube wall and the gas. Various
prototypes have been developed in the past forty years, an example of
which is presented in [19]. Presently, the possibility of using high
efficiency supercritical CO, (sCO-) Brayton cycles with CSP leads to a
particular interest in receivers using sCO, as HTF [20]. Tubular liquid
receivers [21,22] generally consist in an array of thin-walled tubes that
are arranged to shuttle the working fluid in multiple passes through
incident concentrated sunlight. The tube size and wall thickness are
selected to maximize heat transfer while minimizing pumping losses,
thus resulting in an optimum diameter. Lastly, particle suspension
receivers, which are especially applied to central tower systems, work
following various concepts. A recent work [23] reminds all the studies
done since the 1980s, including the recent dense particle suspension
receiver [24,25]. In the latter, the fluidized particles, in a state of dense
suspension with about 30% particle volume fraction, circulate inside a
vertical tube just like a liquid HTF. This brief overview of the receiver
designs shows that among the variety of geometries, the tube
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