

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Review of solid-liquid phase change materials and their encapsulation technologies

Weiguang Su^{a,*}, Jo Darkwa^b, Georgios Kokogiannakis^c

- ^a Centre for Sustainable Energy Technologies, University of Nottingham, Ningbo, China
- ^b Faculty of Engineering, University of Nottingham, UK
- ^c Sustainable Buildings Research Centre, University of Wollongong, Australia

ARTICLE INFO

Article history: Received 19 January 2014 Received in revised form 24 March 2015 Accepted 3 April 2015

Keywords: Phase change materials (PCMs) Micro-/nano-encapsulation technologies Evaluation technologies

ABSTRACT

Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segregation problems during phase change process. The review has also shown that eutectic PCMs have unique advantage since their melting points can be adjusted. In addition, they have relatively high thermal conductivity and density but they possess low latent and specific heat capacities. Encapsulation technologies and shell materials have also been examined and limitations established. The morphology of particles was identified as a key influencing factor on the thermal and chemical stability and the mechanical strength of encapsulated PCMs. In general, in-situ polymerization method appears to offer the best technological approach in terms of encapsulation efficiency and structural integrity of core material. There is however the need for the development of enhancement methods and standardization of testing procedures for microencapsulated PCMs.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction		374		
2.	Proper	roperties of solid-liquid PCMs				
	2.1.	Organic	solid-liquid PCMs.	375		
		2.1.1.	Paraffin materials	375		
		2.1.2.	Non-paraffin materials.	376		
	2.2.	Inorgani	ic solid-liquid PCMs	376		
		2.2.1.	Salt hydrates	376		
		2.2.2.	Inorganic compounds	376		
		2.2.3.	Metals	376		
	2.3.	Eutectic	PCMs	376		
	2.4.	Analysis	s of various PCMs	378		
3.	Develo	opment o	of micro-/nano-encapsulated PCMs	378		
	3.1.	In-situ p	polymerization	378		
		3.1.1.	Interfacial polycondensation	380		
		3.1.2.	Suspension polymerization			
		3.1.3.	Emulsion/miniemulsion polymerization	382		
		3.1.4.	Shell materials	382		
	3.2.	Complex	x coacervation	383		
	3.3.	Sol-gel	method	384		
	3.4.	Solvent	extraction/evaporation method	384		

^{*} Corresponding author. Tel.: +86 0574 8818 0319; fax: +86 0574 8818 0313. E-mail address: weiguang.su@nottingham.edu.cn (W. Su).

List of sy	ymbols	PETRA PFR	pentaerythritol tetraacrylate phenolic resin
(OP)-10	polyethylene glycol octylphenyl ether	PMMA	polymethylmethacrylate
ABS	acrylonitrile-styrene-butadiene copolymer	PS	polystyrene
AS	acrylonitrile-styrene copolymer	PSB	styrene-1,4-butylene glycol diacrylate copolymer
BDDA	1,4-butyleneglycol diacrylate	PSD	styrene-divinylbenzene copolymer
CAB	cellulose acetate butyrate	PSDB	styreneedivinylbenzenee 1,4-butylene glycol diacry-
Ср	specific heat		late copolymer
DETA	diethylene triamine	PVAc	polyvinyl acetate
DNS-86	ether sulfate	SA	stearic acid
DSC	differential scanning calorimetry	SDS	sodium dodecyl sulphate
DSP	sodium phosphate dodecahydrate	SEM	scanning electron microscope
DVB	divinybenzene	SEM	scanning electron microscopy
DVB	divinyl benzene	SMA	styrene-maleic anhydride-monomethyl
EDA	ethylene diamine	St	styrene
EMT	effective medium theory	St-BA	styrene-butyl acrylate
FT-IR	Fourier transform infrared	St-MMA	styrene-methyl methacrylate
Н	latent heat	TA	sodium laureth sulfate
HD	hexadecane	TDI	tolylene 2,4-diisocyanate
HSMA	hydrolyzed-styrene-alt-maleic anhydride	TEM	transmission electron microscope
k	thermal conductivity	TG	thermogravimetric
MDI	methylene diisocyanate	TGA	thermal gravimetric analysis
MEPCM	microencapsulated phase change material	T_m	melting temperature
MF	melamine formaldehyde	TMPTA	trimethylol propane triacrylate
n.v.n.s.	non-volatile non-solvent	TPGDA	tripropylene glycol diacrylate
NEPCM	nanoencapsulated phase change material	TSC	two-step coacervation
O/W	oil/water	UF	urea formaldehyde
PA	palmitic acid	V.S.	volatile solvent
PC	polycarbonate	WBPU	waterborne polyurethane
PCMs	phase change materials	XRD	X-ray diffraction
PDVB	polydivinylbenzene	ρ	density
PEMA	polyethyl methacrylate		

	3.5.	Other micro-/nano-encapsulation methods	385				
	3.6.	Comparison of various microencapsulation technologies	387				
		ntion of MEPCM/NEPCM.					
	4.1.	Thermal energy storage capacity and phase change temperature.	388				
		Thermal conductivity.					
	4.3.	Thermal stability	389				
		Mechanical strength					
		Chemical stability					
		isions					
Refe	References						

1. Introduction

Energy consumption in buildings continues to pose environmental problems to many countries and the world as a whole. Techniques such as thermal energy storage are being explored at different levels for reducing energy consumption in buildings which currently accounts for about 40% of total global energy consumption [1]. Phase change materials (PCMs) are capable of storing and releasing large amounts of energy during melting and solidification at specific temperatures. Thermal energy storage does not only reduce the mismatch between energy supply and demand but also improves the performance and reliability of energy systems and plays an important role in conserving energy resources. Current applications of PCMs in buildings include air conditioning, i.e., free cooling [1], cold thermal storage media and absorption refrigeration. Other integrated systems are PCM Trombe wall, PCM wallboards, PCM shutter, PCM concrete, PCM

under-floor heating systems, PCM ceiling boards [2–4] as well as hot water supply and waste heat recovery systems [5]. For instance, Oro et al. [6] and Li et al. [7] reviewed PCMs melting point below 20 °C for cold thermal energy storage applications. Agyenim et al. [8] identified phase change materials of melting temperature within 0–65 °C to be suitable for domestic heating/cooling application. They also stated that PCMs of melting temperatures 80–120 °C could be used in absorption cooling system, whereas those types of melting temperatures above 150 °C could be applied in solar power plants systems coupled with parabolic trough collectors for direct steam generation. Furthermore, Cabeza et al. [9] stated more comprehensively that melting temperatures up to 21 °C are more suitable for cooling applications, 22–28 °C for thermal comfort applications, 29–60 °C for hot water supply and over 120 °C for waste heat recovery applications.

Depending on the type of PCM, energy storage process could be described as solid-solid, solid-liquid, liquid-gas or solid-gas as

Download English Version:

https://daneshyari.com/en/article/8116453

Download Persian Version:

https://daneshyari.com/article/8116453

<u>Daneshyari.com</u>